×

zbMATH — the first resource for mathematics

On the error term of symmetric Gauss-Lobatto quadrature formulae for analytic functions. (English) Zbl 0946.41019
The authors consider Gauss-Lobatto quadrature formulae associated with a symmetric weight function. The kernel of the remainder term for classes of analytic functions is investigated on elliptical contours. There are found sufficient conditions ensuring that the kernel attains its maximal absolute value at the intersection point of the contour with the real or the imaginary axis.
Reviewer: J.Kofroň (Praha)

MSC:
41A55 Approximate quadratures
65D30 Numerical integration
PDF BibTeX Cite
Full Text: DOI
References:
[1] Walter Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 209 – 226. , https://doi.org/10.1216/rmjm/1181073004 Walter Gautschi, Corrections to: ”On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures”, Rocky Mountain J. Math. 21 (1991), no. 3, 1143. Walter Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Proceedings of the U.S.-Western Europe Regional Conference on Padé Approximants and Related Topics (Boulder, CO, 1988), 1991, pp. 209 – 226. , https://doi.org/10.1216/rmjm/1181073004 Walter Gautschi, Corrections to: ”On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures”, Rocky Mountain J. Math. 21 (1991), no. 3, 1143. · Zbl 0749.41026
[2] Walter Gautschi, Remainder estimates for analytic functions, Numerical integration (Bergen, 1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 357, Kluwer Acad. Publ., Dordrecht, 1992, pp. 133 – 145. · Zbl 0754.41026
[3] Walter Gautschi and Shikang Li, The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules and with multiple end points, J. Comput. Appl. Math. 33 (1990), no. 3, 315 – 329. · Zbl 0724.41024
[4] I. S. Duff and J. K. Reid , Vector and parallel processors in computational science, North-Holland Publishing Co., Amsterdam, 1985. Reprinted from Comput. Phys. Comm. 37 (1985), no. 1-3. · Zbl 0578.00010
[5] Walter Gautschi, E. Tychopoulos, and R. S. Varga, A note on the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature rule, SIAM J. Numer. Anal. 27 (1990), no. 1, 219 – 224. · Zbl 0685.41019
[6] D. B. Hunter, Some error expansions for Gaussian quadrature, BIT 35 (1995), no. 1, 64 – 82. · Zbl 0824.41032
[7] F. Peherstorfer, On the remainder of Gaussian quadrature formulas for Bernstein-Szegő weight functions, Math. Comp. 60 (1993), no. 201, 317 – 325. · Zbl 0796.41025
[8] T. Schira, Ableitungsfreie Fehlerabschätzungen bei numerischer Integration holomorpher Funktionen, Ph.D. Dissertation, Univ. Karlsruhe, 1994. · Zbl 0809.41029
[9] Thomas Schira, The remainder term for analytic functions of Gauss-Lobatto quadratures, J. Comput. Appl. Math. 76 (1996), no. 1-2, 171 – 193. · Zbl 0866.41023
[10] Thomas Schira, The remainder term for analytic functions of symmetric Gaussian quadratures, Math. Comp. 66 (1997), no. 217, 297 – 310. · Zbl 0854.41025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.