×

Dissipative dynamics for hard spheres. (English) Zbl 0945.82562

Summary: The dynamics for a system of hard spheres with dissipative collisions is described at the levels of statistical mechanics, kinetic theory, and simulation. The Liouville operator(s) and associated binary scattering operators are defined as the generators for time evolution in phase space. The BBGKY hierarchy for reduced distribution functions is given, and an approximate kinetic equation is obtained that extends the revised Enskog theory to dissipative dynamics. A Monte Carlo simulation method to solve this equation is described, extending the Bird method to the dense, dissipative hard-sphere system. A practical kinetic model for theoretical analysis of this equation also is proposed. As an illustration of these results, the kinetic theory and the Monte Carlo simulation are applied to the homogeneous cooling state of rapid granular flow.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen,Physica 45:127 (1969); J. V. Sengers, M. H. Ernst, and D. T. Gillespie,J. Chem. Phys. 56:5583 (1972).
[2] H. van Beijeren and M. H. Ernst,J. Stat. Phys. 21:125 (1979).
[3] C. S. Campbell,Annu. Rev. Fluid Mech. 22:57 (1990).
[4] J. M. Montanero and A. Santos,Phys. Rev. E 54:438 (1996).
[5] J. W. Dufty, A. Santos, and J. J. Brey,Phys. Rev. Lett. 77:1270 (1996).
[6] H. M. Jaeger, S. R. Nagel, and R. P. Behringer,Physics Today 49(4):32 (1996).
[7] J. J. Brey, F. Moreno, and J. W. Dufty,Phys. Rev. E 54:445 (1996).
[8] S. McNamara and W. R. Young,Phys. Rev. E 53:5089 (1996);Phys. Rev. E 50:R28 (1994);Phys. Fluids A 4:496 (1992); S. McNamara,Phys. Fluids A 5:3056 (1993).
[9] I. Goldhirsch and G. Zanetti,Phys. Rev. Lett. 70:1619 (1993).
[10] M. A. Hopkins and M. Y. Louge,Phys. Fluids A 3:47 (1990).
[11] B. Bernu and R. Mazighi,J. Phys. A: Math. Gen. 23:5745 (1990). · Zbl 0729.73648
[12] T. P. C. van Noije, R. Brito, and M. H. Ernst, Preprint (1996).
[13] A. Goldshtein and M. Shapiro,J. Fluid Mech. 282:75 (1995); C. K. K. Lun,J. Fluid Mech. 233:539 (1991); C. K. K. Lun and S. B. Savage,J. Appl. Mech. 54:47 (1987). · Zbl 0881.76010
[14] P. Zamankhan,Phys. Rev. E 52:4877 (1995); J. T. Jenkins and F. Mancini,Phys. Fluids A 1:2050 (1989); M. Farrell, C. K. K. Lun, and S. B. Savage,Acta Mech. 63:45 (1986).
[15] P. K. Haff,J. Fluid Mech. 134:401 (1983). · Zbl 0537.76005
[16] R. Evans,Adv. Phys. 28:143 (1979).
[17] J. F. Lutsko and M. Baus,Phys. Rev. A 41:6647 (1990).
[18] T. R. Kirkpatrick, S. P. Das, M. H. Ernst, and J. Piasecki,J. Chem. Phys. 92:3768 (1990).
[19] J. T. Jenkins and M. W. Richman,Arch. Rat. Mech. Anal. 87:355 (1985);Phys. Fluids 28:3485 (1985); C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurnity,J. Fluid Mech. 140:223 (1984); J. T. Jenkins and S. B. Savage,J. Fluid Mech. 130:187 (1983). · Zbl 0617.76085
[20] G. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994).
[21] J. W. Dufty, InLectures on Thermodynamics and Statistical Mechanics, M. López de Haro and C. Varea eds., (World Scientific, Singapore, 1990), pp. 166–181.
[22] J. J. Brey, M. J. Ruiz-Montero, and D. Cubero,Phys. Rev E 54:3664 (1996).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.