×

Conformal anomaly of submanifold observables in AdS/CFT correspondence. (English) Zbl 0944.81046

Summary: We analyze the conformal invariance of submanifold observables associated with \(k\)-branes in the AdS/CFT correspondence. For odd \(k\), the resulting observables are conformally invariant, and for even \(k\), they transform with a conformal anomaly that is given by a local expression which we analyze in detail for \(k=2\).

MSC:

81T50 Anomalies in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
53C40 Global submanifolds
53C80 Applications of global differential geometry to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
53A30 Conformal differential geometry (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Maldacena, The large-\(N\); J. Maldacena, The large-\(N\)
[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109.; S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, hep-th/9802109. · Zbl 1355.81126
[3] E. Witten, Anti-de Sitter space and holography, hep-th/9803002.; E. Witten, Anti-de Sitter space and holography, hep-th/9803002. · Zbl 0914.53048
[4] Penrose, R.; Rindler, W., (Spinors and Space-time, Vol. 2 (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), ch. 9
[5] Graham, C. R.; Lee, J., Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., 87, 186 (1991) · Zbl 0765.53034
[6] L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114.; L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114.
[7] Henningson, M.; Skenderis, K., The holographic Weyl anomaly, JHEP, 23, 9807 (1998), hep-th/9806087 · Zbl 0958.81083
[8] Holography and the Weyl anomaly, hep-th/9812032.; Holography and the Weyl anomaly, hep-th/9812032.
[9] J. Maldacena, Wilson loops in large-\(N\); J. Maldacena, Wilson loops in large-\(N\) · Zbl 0947.81128
[10] S.-J. Rey and J. Yee, Macroscopic strings as heavy quarks in large-\(N\); S.-J. Rey and J. Yee, Macroscopic strings as heavy quarks in large-\(N\) · Zbl 1072.81555
[11] Anderson, M., Complete minimal varieties in hyperbolic space, Invent. Math., 69, 477 (1982) · Zbl 0515.53042
[12] Anderson, M., Complete minimal hypersurfaces in hyperbolic \(n\)-manifolds, Comment. Math. Helv., 58, 264 (1983) · Zbl 0549.53058
[13] Hardt, R.; Lin, F.-H., Regularity at infinity for area-minimizing hypersurfaces in hyperbolic space, Invent. Math., 88, 217 (1987) · Zbl 0633.49020
[14] Lin, F.-H., On the Dirichlet problem for minimal graphs in hyperbolic space, Invent. Math., 96, 593 (1989) · Zbl 0707.35028
[15] Lin, F. H., Asymptotic behavior of area-minimizing currents in hyperbolic space, Comm. Pure Appl. Math., 42, 229 (1989) · Zbl 0688.49042
[16] Tonegawa, Y., Existence and regularity of constant mean curvature hypersurfaces in hyperbolic space, Math. Z., 221, 591 (1996) · Zbl 0874.53050
[17] D. Berenstein, R. Corrado, W. Fischler and J. Maldacena, The operator product expansion for Wilson loops and surfaces in the large-\(N\); D. Berenstein, R. Corrado, W. Fischler and J. Maldacena, The operator product expansion for Wilson loops and surfaces in the large-\(N\)
[18] Fefferman, C.; Graham, C. R., (Conformal invariants, Elie Cartan et les Mathḿatiques d’Aujourhui (1985), Asterisque), 95
[19] Polyakov, A. M., Fine structure of strings, Nucl. Phys. B, 268, 406 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.