×

zbMATH — the first resource for mathematics

Numerical simulation of viscous free surface flow. (English) Zbl 0943.76051
From the summary: We examine some methods to track the free surface in numerical flow simulations, typically during the casting of metals into moulds. The algorithms employed make use of a mixed interpolation formulation to approximate the discretized governing equations for elimination on a Lagrangian type moving mesh. Significant savings in CPU time are realized by virtue of the air domain not being considered in the finite element analysis. The methods are tested by solving typical industrial flow problems.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D27 Other free boundary flows; Hele-Shaw flows
76T99 Multiphase and multicomponent flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112085000635 · Zbl 0588.76020
[2] Barr, P.K. and Ashurst, W.T. ”An interface scheme for turbulent flame propagation”, Sandia National Laboratory Report, pp. 82-8773.
[3] DOI: 10.1016/0021-9991(82)90020-1 · Zbl 0489.76007
[4] DOI: 10.1122/1.549379
[5] DOI: 10.1016/0021-9991(80)90030-3 · Zbl 0425.76086
[6] DOI: 10.1016/0021-9991(85)90191-3 · Zbl 0555.65085
[7] DOI: 10.1108/EUM0000000004108 · Zbl 0923.76116
[8] Debbaut, B. (1993, ”Numerical simulation of the blow molding process”, SPE Antec Papers, Vol. 32, pp. 1870-2.
[9] DOI: 10.1115/1.3152416
[10] DOI: 10.1063/1.1761178 · Zbl 1180.76043
[11] DOI: 10.1016/0021-9991(81)90145-5 · Zbl 0462.76020
[12] DOI: 10.1016/0021-9991(74)90051-5 · Zbl 0292.76018
[13] DOI: 10.1016/0021-9991(70)90055-0 · Zbl 0194.57704
[14] DOI: 10.1016/0021-9797(71)90188-3
[15] Hwang, W.S. and Stöehr, R.A. (1988, ”Modelling of fluid flow”, ASM Metal Handbook, Vol. 15, p. 867.
[16] DOI: 10.1002/(SICI)1097-0363(19971030)25:8<931::AID-FLD594>3.0.CO;2-1 · Zbl 0902.76060
[17] Minaie, B., Stelson, K.A. and Voller, V.R. (1987, ”Fluid flow and solidification model of die casting”, ASME Modelling of Material Processing, MD, Vol. 3, pp. 35-50.
[18] DOI: 10.1002/nme.1620361204 · Zbl 0774.76053
[19] DOI: 10.1002/fld.1650071005 · Zbl 0634.76033
[20] DOI: 10.1016/0021-9991(85)90141-X · Zbl 0646.76053
[21] Schulz, W.D. (1964, ”Two-dimensional Lagrangian hydrodynamics difference equations”, Methods in Computational Physics, Vol. 3, pp. 1-45.
[22] DOI: 10.1016/0021-9991(84)90126-8 · Zbl 0594.76047
[23] Swaminathan, C.R. and Voller, V. (1993, ”Numerical modelling of filling and solidification in metal casting processes; a unified approach”, in Lewis, R.W. (Ed.), International Conference for Numerical Methods in Thermal Problems VIII, Swansea UK, pp. 284-96, ISBN-0-906674-80-8.
[24] Tadayon, M.R., Spittle, J.A. and Brown, S.G.R. (1993, ”Fluid flow and heat transfer modelling of mould filling in casting processes”, in Lewis, R.W. (Ed.), International Conference for Numerical Methods in Thermal Problems VIII, Swansea, UK, pp. 309-17, ISBN-0-906674-80-8.
[25] DOI: 10.1002/nme.1620350410
[26] DOI: 10.1002/fld.1650180704 · Zbl 0806.76045
[27] DOI: 10.1122/1.549379
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.