×

Numerical analysis of junctions between thin shells. II: Approximation by finite element methods. (English) Zbl 0943.74039

Summary: We present numerical analysis of junctions between thin shells, described theoretically in part I [see the foregoing entry]. We describe the approximation by a ‘pseudo-conforming’ finite element method associated with the Argyris triangle, taking into account the numerical integration. Under suitable hypotheses on the integration schemes and on the data, we prove the convergence of this method, derive a priori error estimates, and discuss some examples.

MSC:

74K30 Junctions
74K25 Shells
74S05 Finite element methods applied to problems in solid mechanics
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics

Software:

Modulef
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bernadou, M.; Fayolle, S.; Léné, F., Numerical analysis of junctions between plates, Comput. Methods Appl. Mech. Engrg., 74, 307-326 (1989) · Zbl 0687.73068
[2] Fayolle, S., Sur l’analyse numérique de raccords de poutres et de plaques, Thèse de l’Université P. et M. Curie (1987)
[3] Bernadou, M.; Cubier, A., Numerical analysis of junctions between thin shells. Part 1: Continuous problems, Comput. Methods Appl. Mech. Engrg., 161, 349-363 (1998) · Zbl 0943.74038
[4] Zenisek, A., Nonhomogeneous boundary conditions and curved triangular finite element, Apl. Mat., 26, 121-140 (1981) · Zbl 0475.65073
[5] Bernadou, M., Finite Element Methods for Thin Shell Problems (1996), J. Wiley & Sons: J. Wiley & Sons Chichester · Zbl 0843.73002
[6] Cubier, A., Analyse et simulation numériques de jonctions de coques minces, Thèse de l’Université P. et M. Curie (1994)
[7] Argyris, J. H.; Fried, I.; Scharpf, D. W., The TUBA family of plate elements for the matrix displacement method, Aero. J. Roy. Aeronaut. Soc., 72, 701-709 (1968)
[8] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[9] Dunavant, D. A., High degree efficient symmetrical gaussian quadrature rules for the triangle, Int. J. Numer., 13, 1129-1148 (1985) · Zbl 0589.65021
[10] Zienkiewicz, O. C.; Taylor, R. L., The Finite Element Method, (Basic Formulation and Linear Problems, Vol. 1 (1989), McGraw-Hill: McGraw-Hill New York) · Zbl 0991.74002
[11] Bernadou, M.; George, P. L.; Hassim, A.; Joly, P.; Laug, P.; Muller, B.; Perronet, A.; Saltel, E.; Steer, D.; Vanderbork, G.; Vidrascu, M., Modulef: A Modular Library of Finite Elements (1986), I.N.R.I.A
[12] Sander, G., Modèles d’éléments finis délinquants, (Groupe de travail ‘Méthodes Numériques pour les Problèmes de Coques’ (17 Janvier 1985)), Clamart
[13] M. Bernadou, F. Palma, P. Trouvé and M.A. Vilariño, to appear.; M. Bernadou, F. Palma, P. Trouvé and M.A. Vilariño, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.