×

zbMATH — the first resource for mathematics

An introduction to cocyclic generalised Hadamard matrices. (English) Zbl 0943.05025
Summary: Many codes and sequences designed for robust or secure communications are built from Hadamard matrices or from related difference sets or symmetric block designs. If an alphabet larger than \(\{0,1\}\) is required, the natural extension is to generalised Hadamard matrices, with entries in a group. The code and sequence construction techniques for Hadamard matrices are applicable to the general case. A cocyclic generalised Hadamard matrix with entries in an abelian group is equivalent to a semiregular central relative difference set and to a divisible design with a regular group of automorphisms, class regular with respect to the forbidden central subgroup. In this introduction we outline the necessary background on cocycles and their properties, give some familiar examples of this unfamiliar concept and demonstrate the equivalence of the above-mentioned objects. We present recent results on the theory of cocyclic generalised Hadamard matrices and their applications in one area: error-correcting codes.

MSC:
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
05B10 Combinatorial aspects of difference sets (number-theoretic, group-theoretic, etc.)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Baliga, A., New self-dual codes from cocyclic Hadamard matrices, J. combin. math. combin. comput., 28, 7-14, (1998) · Zbl 0922.05013
[2] Baliga, A.; Horadam, K.J., Cocyclic matrices over \(Zt × Z2\^{}\{2\}\), Australas. J. combin., 11, 123-134, (1995) · Zbl 0838.05017
[3] A. Baliga, K.J. Horadam, Cocyclic Hadamard matrices, preprint April 1998, Erdös Memorial Volume, SSICC, submitted. · Zbl 0838.05017
[4] de Launey, W., On the construction of n-dimensional designs from 2-dimensional designs, Australas. J. combin., 1, 67-81, (1990) · Zbl 0758.05034
[5] de Launey, W., Generalised Hadamard matrices which are developed modulo a group, Discrete math., 104, 49-65, (1992) · Zbl 0762.05025
[6] de Launey, W.; Flannery, D.L.; Horadam, K.J., Cocyclic Hadamard matrices and difference sets, Discrete appl. math, 102, 47-62, (2000) · Zbl 0956.05026
[7] de Launey, W.; Horadam, K.J., A weak difference set construction for higher dimensional designs, Des. codes cryptography, 3, 75-87, (1993) · Zbl 0838.05019
[8] W. de Launey, M.J. Smith, Cocyclic orthogonal designs and the asymptotic existence of maximal size relative difference sets with forbidden subgroup size 2, 1998, preprint. · Zbl 1001.05032
[9] de Launey, W.; Stafford, R., On cocyclic weighing matrices and the regular group of actions of certain Paley matrices, Discrete appl. math., 102, 63-101, (2000) · Zbl 0961.05068
[10] Flannery, D.L., Transgression and the calculation of cocyclic matrices, Australas. J. combin., 11, 67-78, (1995) · Zbl 0833.05013
[11] Flannery, D.L., Calculation of cocyclic matrices, J. pure appl. algebra, 112, 181-190, (1996) · Zbl 0867.20043
[12] Flannery, D.L., Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. algebra, 192, 749-779, (1997) · Zbl 0889.05032
[13] D.L. Flannery, E.A. O’Brien, Computing 2-cocycles for central extensions and relative difference sets, Comm. Algebra (1999), to appear.
[14] Horadam, K.J., Progress in cocyclic matrices, Congr. numer., 118, 161-171, (1996) · Zbl 0898.05011
[15] K.J. Horadam, Cocyclic Hadamard codes, Proceedings of the 1998 IEEE ISIT, IEEE, 1998, p. 246.
[16] K.J. Horadam, Sequences from cocycles, in: AAECC-13, Lecture Notes in Computer Science, Vol. 1719, eds. M. Fossorier et al., Springer, Berlin, 1999, pp. 121-130. · Zbl 0981.94008
[17] K.J. Horadam, Multiplication cocycles and central relative (pa, pa, pa,1)-difference sets, Research Report No. 7, Mathematics Department, RMIT, May 1998.
[18] K.J. Horadam, Equivalence classes of central semiregular relative difference sets, J. Combin. Designs (2000), to appear. · Zbl 0953.05009
[19] K.J. Horadam, W. de Launey, Cocyclic development of designs, J. Algebraic Combin. 2 (1993) 267-290, Erratum 3 (1994) 129. · Zbl 0785.05019
[20] K.J. Horadam, W. de Launey, Generation of cocyclic Hadamard matrices, in: W. Bosma, A. van der Poorten (Eds.), Computational Algebra and Number Theory, Kluwer Academic, Dordrecht, 1995, pp. 279-290 (Chapter 20). · Zbl 0838.05018
[21] Horadam, K.J.; Lin, C., Construction of proper higher dimensional Hadamard matrices from perfect binary arrays, J. combin. math. combin. comput., 28, 237-248, (1998) · Zbl 0917.05016
[22] K.J. Horadam, A.A.I. Perera, Codes from cocycles, in: T. Mora, H. Mattson (Eds.), AAECC-12, Lecture Notes in Computer Science, vol. 1255, Springer, Berlin, 1997, pp. 151-163. · Zbl 1042.94532
[23] G. Hughes, Constacyclic codes and cocycles, Proceedings of 1998 IEEE ISIT, IEEE, 1998, p. 233.
[24] G. Hughes, Characteristic functions of relative difference sets, correlated sequences and Hadamard matrices, in: AAECC-13, Lecture Notes in Computer Science, Vol. 1719, eds. M. Fossorier et al., Springer, Berlin, 1999, pp. 346-354. · Zbl 0956.05025
[25] G. Hughes, Non-splitting abelian (4t, 2, 4t, 2t)-relative difference sets and Hadamard cocycles, Eur. J. Combin. (2000), to appear. · Zbl 0943.05022
[26] Ito, N., Note on Hadamard matrices of type Q, Studia sci. math. hungar., 16, 389-393, (1981) · Zbl 0537.05012
[27] Ito, N., On Hadamard groups, J. algebra, 168, 981-987, (1994) · Zbl 0906.05012
[28] Ito, N., On Hadamard groups II, J. algebra, 169, 936-942, (1994) · Zbl 0808.05016
[29] Ito, N., Remarks on Hadamard groups, Kyushu J. math., 50, 1-9, (1996)
[30] Perera, A.A.I.; Horadam, K.J., Cocyclic generalised Hadamard matrices and central relative difference sets, Des. codes cryptography, 15, 187-200, (1998) · Zbl 0919.05007
[31] A.A.I. Perera, Orthogonal cocycles, Ph. D. Thesis, RMIT University, Melbourne, Australia, submitted June 1999.
[32] E.F. Assmus Jr., J.D. Key, Designs and their Codes, CUP, Cambridge, 1992.
[33] T. Beth, D. Jungnickel, H. Lenz, Design Theory, CUP, Cambridge, 1993.
[34] K.S. Brown, Cohomology of Groups, GTM 87, Springer, New York, 1982. · Zbl 0584.20036
[35] Butson, A.T., Generalised Hadamard matrices, Proc. amer. math. soc., 13, 894-898, (1962) · Zbl 0109.24605
[36] C.J. Colbourn, J.H. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, 1996. · Zbl 0836.00010
[37] Davis, J.A.; Jedwab, J., A unifying construction for difference sets, J. combin. theory ser. A, 80, 13-78, (1997) · Zbl 0884.05019
[38] de Launey, W., A survey of generalised Hadamard matrices and difference matrices D(k, λ ; G) with large k, Utilitas math., 30, 5-29, (1986) · Zbl 0597.05016
[39] de Launey, W., Square GBRDs over non-abelian groups, Ars combin., 27, 40-49, (1989) · Zbl 0673.05014
[40] de Launey, W., A note on N-dimensional Hadamard matrices of order 2t and reed – muller codes, IEEE trans-IT, 37, 664-667, (1991) · Zbl 0727.05013
[41] Drake, D.A., Partial λ-geometries and generalised Hadamard matrices, Canadian J. math., 31, 617-627, (1979) · Zbl 0373.05018
[42] Elliott, J.E.H.; Butson, A.T., Relative difference sets, Illinois J. math., 10, 517-531, (1966) · Zbl 0145.01503
[43] Jedwab, J., Generalised perfect binary arrays and menon difference sets, Des. codes cryptography, 2, 19-68, (1992) · Zbl 0767.05030
[44] Jungnickel, D., On automorphism groups of divisible designs, Canadian J. math., 24, 257-297, (1982) · Zbl 0465.05011
[45] G. Karpilovsky, Projective Representations of Finite Groups, Marcel Dekker, New York, 1985. · Zbl 0568.20016
[46] Mackenzie, C.; Seberry, J., Maximal q-ary codes and Plotkin’s bound, Ars combin., 26B, 37-50, (1988) · Zbl 0667.94009
[47] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, 9th Impression, North-Holland, Amsterdam, 1996. · Zbl 0369.94008
[48] A. Pott, Finite Geometry and Character Theory, Lecture Notes in Mathematics, vol. 1601, Springer, Berlin, 1995. · Zbl 0818.05001
[49] A. Pott, A survey on relative difference sets, in Groups, Difference Sets and the Monster, Walter de Gruyter, New York, 1996. · Zbl 0847.05018
[50] Tonchev, V.D., Self-orthogonal designs and extremal doubly even codes, J. combin. theory ser. A, 52, 197-205, (1989) · Zbl 0694.05012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.