×

zbMATH — the first resource for mathematics

The differential infectivity and staged progression models for the transmission of HIV. (English) Zbl 0942.92030
Summary: Recent studies of HIV RNA in infected individuals show that viral levels vary widely between individuals and within the same individual over time. Individuals with higher viral loads during the chronic phase tend to develop AIDS more rapidly. If RNA levels are correlated with infectiousness, these variations explain puzzling results from HIV transmission studies and suggest that a small subset of infected people may be responsible for a disproportionate number of infections.
We use two simple models to study the impact of variations in infectiousness. In the first model, we account for different levels of virus between individuals during the chronic phase of infection and the increase in the average time from infection to AIDS that goes along with a decreased viral load. The second model follows the more standard hypothesis that infected individuals progress through a series of infection stages, with the infectiousness of a person depending upon his current disease stage. We derive and compare threshold conditions for the two models and find explicit formulas of their endemic equilibria. We show that formulas for both models can be put into a standard form, which allows for a clear interpretation. We define the relative impact of each group as the fraction of infections being caused by that group.
We use these formulas and numerical simulations to examine the relative importance of different stages of infection and different chronic levels of virus to the spreading of the disease. The acute stage and the most infectious group both appear to have a disproportionate effect, especially on the early epidemic. Contact tracing to identify super-spreaders and alertness to the symptoms of acute HIV infection may both the needed to contain this epidemic.

MSC:
92D30 Epidemiology
34D99 Stability theory for ordinary differential equations
92C60 Medical epidemiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pratt, R.D.; Shapiro, J.F.; McKinney, N.; Kwok, S.; Spector, S.A., Virologic characterization of primary HIV-1 infection in a health care worker following needlestick injury, J. infect. dis, 172, 851, (1995)
[2] Quinn, T.C., Acute primary HIV infection, Jama, 278, 58, (1997)
[3] Henrard, D.R.; Phillips, J.F.; Muenz, L.R.; Blattner, W.A.; Weisner, D.; Eyster, M.E.; Goedert, J.J., Natural history of HIV-1 cell-free viremia, Jama, 274, 554, (1995)
[4] O’Brien, T.R.; Blattner, W.A.; Waters, D.; Eyster, M.E.; Hilgartner, M.W.; Coher, A.R.; Luban, N.; Hatzakis, A.; Aledort, L.M.; Rosenberg, P.S.; Milet, W.J.; Kroner, B.L.; Goedert, J.J., Serum HIV-1 RNA levels and time to development of AIDS in the multicenter hemophilia cohort study, Jama, 276, 105, (1996)
[5] Wong, M.T.; Dolan, M.J.; Kozlow, E.; Doe, R.; Melcher, G.P.; Burke, D.S.; Boswell, R.N.; Vahey, M., Patterns of virus burder and T cell phenotype are established early and are correlated with the rate of disease progression in HIV type 1 infected persons, J. infect. dis., 173, 877, (1996)
[6] Piatak, M.; Saag, M.S.; Yang, L.C.; Clark, S.J.; Kappes, J.C.; Luk, K.C.; Hahn, B.H.; Shaw, G.M.; Lifson, J.D., High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR, Science, 259, 1749, (1993)
[7] Baltimore, D., Lessons from people with nonprogressive HIV infection, N. engl. J. med., 332, 259, (1995)
[8] Cao, Y.; Qin, L.; Zhang, L.; Safrit, J.; Ho, D.D., Virologic and immunologic characterization of long-term survivors of HIV type 1 infection, N. engl. J. med., 332, 201, (1995)
[9] Clumeck, N.; Taelman, H.; Hermans, P.; Piot, P.; Schoumacher, M.; Dewit, S., A cluster of HIV infection among heterosexual people without apparent risk-factors, N. engl. J. med., 321, 1460, (1989)
[10] Holmberg, S.D.; Horsburgh, C.R.; Ward, J.W.; Jaffe, H.W., Biologic factors in the sexual transmission of human immunodeficiency virus, J. infect. dis., 160, 116, (1989)
[11] Palenicek, J.; Fox, R.; Margolick, J.; Farzadegan, H.; Hoover, D.; Odaka, N.; Rubb, S.; Armenian, H.; Harris, J.; Saah, A.J., Longitudinal study of homosexual couples discordant for HIV-1 antibodies in the baltimore MACS study, J. aids, 5, 1204, (1992)
[12] Peterman, T.A.; Stonebrunner, R.L.; Allen, J.R.; Jaffe, H.W.; Curran, J.W., Risk of human immunodeficiency virus transmission from heterosexual adults with transfusion-associated infections, Jama, 256, 55, (1988)
[13] Ragni, M.V.; Kingsley, L.A.; Nimorwicz, P.; Gupta, P.; Rinaldo, C.R., HIV heterosexual transmission in hemophilia couples: lack of relation to T4 number, clinical diagnosis, or duration of HIV exposure, J. aids, 2, 557, (1989)
[14] Lazzarin, A.; Saracco, A.; Musicco, M.; Nicolosi, A., Man-to-woman sexual transmission of the human immunodeficiency virus, Arch. intern. med., 151, 2411, (1991)
[15] Royce, R.A.; Sena, A.; Cates, W.; Cohen, M.S., Sexual transmission of HIV N, Eng. J. med., 336, 1072, (1997)
[16] Biti, R.; French, R.; Young, J.; Bennets, J.; Stewart, G.; Liang, T., HIV-1 infection in an individual homozygous for the CCR5 deletion allele, Nat. med., 3, 252, (1997)
[17] Y. Huang et al., The role of a mutant CCR5 allele in HIV-1 transmission and disease progression, Nature Medicine, 2 (1996) 1240
[18] I.M. Longini, W.S. Clark, M. Haber, R. Horsburgh, The stages of HIV infection: Waiting times and infection transmission probabilities, in: Castillo-Chavez, Levin, Shoemaker (Eds.), Mathematical Approaches to AIDS Epidemiology Lecture Notes in Biomathematics, vol. 83, Springer, New York, 1989, p. 111 · Zbl 0685.92012
[19] Anderson, R.M.; May, R.M.; Medley, G.F.; Johnson, A., A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. math. med. biol., 3, 229, (1986) · Zbl 0609.92025
[20] Jacquez, J.A.; Simon, C.P.; Koopman, J.; Sattenspiel, L.; Perry, T., Modelling and analyzing HIV transmission: the effect of contact patterns, Math. biosci., 92, 119, (1988) · Zbl 0686.92016
[21] Jacquez, J.A.; Koopman, J.S.; Simon, C.P.; Longini, I.M., Role of the primary infection in epidemics of HIV infection in gay cohorts, J. aids, 7, 1169, (1994)
[22] Lin, X., Qualitative analysis of an HIV transmission model, Math. biosci., 104, 111, (1991) · Zbl 0748.92011
[23] Lin, X.; Hethcote, H.W.; Van den Driessche, P., An epidemiological model for HIV/AIDS with proportional recruitment, Math. biosci., 118, 181, (1993) · Zbl 0793.92011
[24] Thieme, H.R.; Castillo-Chavez, C., How may infection-age dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. appl. math., 53, 1449, (1993) · Zbl 0811.92021
[25] Wiley, J.A.; Herschkorn, S.J.; Padian, N.S., Heterogeneity in the probability of HIV transmission per sexual contact: the case of male-to-female transmission in penile – vaginal intercourse, Stat. in med., 8, 93, (1989)
[26] Ho, D.D.; Tarsem, M.; Masud, A., Quantitation of human immunodeficiency virus type 1 in the blood of infected persons, N. engl. J. med., 321, 1621, (1989)
[27] Pedersen, C.; Nielsen, C.M.; Vestergaard, B.F.; Gerstoft, J.; Krogsgaard, K.; Nielsen, J.O., Temporal relation of antigenaemia and loss of antibodies to core antigens to development of clinical disease in HIV infection, Br. med. J., 295, 567, (1987)
[28] Allian, J.P.; Laurian, Y.; Paul, D.A.; Senn, D., Serological markers in early stages of immunodeficiency virus infection in haemophiliacs, Lancet, 2, 1233, (1986)
[29] Sydow, M.; Gaines, H.; Sonnerborg, A.; Forsgren, M.; Pehrson, P.O.; Strannegard, O., Antigen detection in primary HIV infection, Br. med. J., 296, 238, (1989)
[30] J.A. Jacquez, C.P. Simon, J. Koopman, Core groups and the R0s for subgroups in heterogeneous SIS and SI models, in: Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 1995, p. 279 · Zbl 0839.92021
[31] Kemper, J.T., On the identification of superspreaders for infectious disease, Math. biosci., 48, 111, (1980) · Zbl 0442.92024
[32] J.M. Hyman, J. Li, A.E. Stanley, Sensitivity Studies of the Differentiated Infectivity and Staged Progression Models for the Transmission of HIV, In preparation, available from http://math.lanl.gov/ mac/papers/papers.html in late 1998
[33] Mellors, J.W.; Munoz, A.; Giorgi, J.V.; margolick, J.B.; Tassoni, C.J.; Gupta, P.; Kingsley, L.A.; Todd, J.A.; Saah, A.J.; Detels, R.; Phair, J.P.; Rinaldo, C.R., Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection, Ann. intern. med., 126, 946, (1997)
[34] P. Gupta, J. Mellors, L. Kingsley, S. Riddler, M. Singh, S. Schreiber, M. Cronin, C. Rinaldo, High viral load in semen of HIV-1 infected men at all stages of disease and its reduction by antiretroviral therapy, Proc. 4th Conf. Retro. and Opportun. Infect., abstract no. 726 (1997)
[35] C. Hart, M. Palmore, T. Wright, J. Lennox, T. Evans-Strickfaden, T. Bush, C. Schnell, L. Conlet, T.V. Ellerbrock, Correlation of cell-free and cell-associated HIV RNA levels in plasma and vaginal sectretions, Proc. 4th Conf. Retro. and Opportun. Infect., abstract no. 25 (1997)
[36] C.E. Speck, R. Coombs, L. Koutsky, J. Zeh, L. Corey, T. Hooton, S. Ross, J. Krieger, Rates and determinants of HIV shedding in semen, Int. Conf. AIDS, abstract no. We. C.334 (1996)
[37] S. Jurrianns, P.L. Vernazza, J. Goudsmit, J. Boogaard, B. Van Gemen, HIV-1 viral load in semen versus blood plasma, Int. Conf. AIDS, abstract no. Th.A.4036 (1996)
[38] Dickover, R.E.; Garratty, E.M.; Herman, S.A.; Sim, M.S.; Plaeger, S.; Boyer, P.J.; Keller, M.; Deveikis, A.; Stiehm, E.R.; Bryson, Y.J., Identification of levels of maternal HIV-1 RNA associated with risk of perinatal transmission, Jama, 275, 599, (1996)
[39] Padian, N.; Marquis, L.; Francis, D.P.; Anderson, R.E.; Rutherford, G.W.; O’Malley, P.M.; Winkelstein, W., Male-to-female transmission of human immunodeficiency virus, Jama, 258, 788, (1987)
[40] MMWR, Update: transmission of HIV infection during and invasive dental procedure - Florida 40 (1991) 21
[41] Pezzotti, P.; Phillips, A.N.; Dorrucci, M.; Lepri, A.C.; Galai, N.; Vlahov, D.; Rezza, G., Category of exposure to HIV and age in the progression to AIDS, Br. med. J., 313, 583, (1996)
[42] Latif, A.S.; Katzenstein, D.A.; Basset, M.T.; Houston, S.; Emmanuel, J.C.; Marowa, E., Genital ulcers and transmission of HIV among couples in zimbabwe, J. aids, 3, 519, (1989)
[43] R.A. Royce, W. Winkelstein, P. Bachetti, Cigarette smoking and incidence of AIDS, Abstracts of the Sixth International Conference on AIDS, San Francisco, CA, 1990, Abstract Th.C.39
[44] Henin, Y.; Mandelbrot, L.; Henrion, R.; Pradinaud, R.; Couland, J.P.; Montagnier, L., Virus excretion in the cervicovaginal secretions of pregnant and nonpregnant HIV-infected women, J. aids, 6, 72, (1993)
[45] Landesman, S.H.; Burns, D., Quantifying HIV, Jama, 275, 640, (1996)
[46] Garred, P., Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin, Lancet, 349, 236, (1997)
[47] Greenblatt, R.M.; Lukehart, S.A.; Plummer, F.A.; Quinn, T.C.; Critchlow, C.W.; Ashley, R.L.; D’Costa, L.J.; Ndinya-Achola, J.O.; Corey, L.; Ronald, A.R.; Holmes, K.K., Genital ulceration as a risk factor for HIV infection, J. aids, 2, 47, (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.