×

zbMATH — the first resource for mathematics

Skin-friction drag reduction via robust reduced-order linear feedback control. (English) Zbl 0941.76024
The authors present an application of linear controller to a two-dimensional channel flow. An optimal and robust reduced-order linear feedback controller is derived by using multivariable linearized-quadratic-Gaussian synthesis. This controller is applied to reduced linearized Navier-Stokes equations in order to suppress finite amplitude near-wall disturbances at Reynolds number 1500. The controller efficiently reduces near-wall disturbances, giving a substantial reduction in the drag.

MSC:
76D55 Flow control and optimization for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
93B52 Feedback control
93C20 Control/observation systems governed by partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2514/3.12171
[2] DOI: 10.1006/jfls.1997.0098
[3] DOI: 10.1146/annurev.fl.28.010196.002133
[4] Barnwell , R. W. , Hussaini , M. Y. ( 1992 ). ” Natural laminar flow and laminar flow control ” ( Springer-Verlag , New York ).
[5] DOI: 10.1063/1.869515
[6] DOI: 10.1063/1.869337
[7] DOI: 10.1063/1.869290
[8] DOI: 10.1063/1.869210
[9] Kato T., JSME International Journal Series B-Fluids and Thermal Engineering. 40 pp 536– (1997)
[10] DOI: 10.1115/1.2819508
[11] DOI: 10.2514/2.66
[12] DOI: 10.1017/S0022112096008944 · Zbl 0893.76033
[13] DOI: 10.1063/1.868897 · Zbl 1086.76034
[14] DOI: 10.1115/1.2817785
[15] DOI: 10.1017/S0022112095001054
[16] DOI: 10.1017/S0022112094000431 · Zbl 0800.76191
[17] DOI: 10.1007/BF00863515
[18] DOI: 10.1017/S0022112095003284 · Zbl 0850.76392
[19] DOI: 10.1016/0017-9310(95)00070-P · Zbl 0922.76119
[20] DOI: 10.2514/3.12930
[21] DOI: 10.1016/0167-6105(94)00074-N
[22] DOI: 10.1063/1.868327
[23] DOI: 10.1016/0955-7997(94)90040-X
[24] DOI: 10.2514/3.12307
[25] Shou , K. , Doyle , J. C. Glover , K. ( 1996 ). Robust and optimal control ( Prentice Hall ). · Zbl 0999.49500
[26] DOI: 10.1109/9.83533 · Zbl 0753.90093
[27] Joshi S. S., J. Fluid Mech. 332 pp 157– (1997)
[28] Joshi S. S., Proc. 34th Conference on Decision ami Control pp 921– (1995)
[29] Hu H. H., Proc. Royal Soc. of London A (1994)
[30] Cortelezzi L, Phyx. Rev. E. 58
[31] Doyle J. C., IEEE Trans. Automatic and Control. 26 (1981)
[32] Thak M., IEEE Trans. Automatic and Control 32 (1987)
[33] DOI: 10.1063/1.866609
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.