×

zbMATH — the first resource for mathematics

A front-tracking algorithm for accurate representation of surface tension. (English) Zbl 0940.76047
Summary: We present a front-tracking algorithm for the solution of two-dimensional incompressible Navier-Stokes equations with interfaces and surface forces. Attention is focused on obtaining an accurate description of surface tension terms and of the associated pressure jump. The stationary Laplace solution for a bubble with surface tension is considered. A careful treatment of the pressure gradient terms at the interface allows the reduction of spurious currents to machine precision. Good results are obtained for the damped oscillations of a capillary wave compared with the initial-value linear theory. Additionally, the classical test of Rayleigh-Taylor instability is presented.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids
PDF BibTeX Cite
Full Text: DOI
References:
[1] McHyman, Physica D 12 pp 396– (1984)
[2] Floryan, Appl. Mech. Rev. 42 pp 323– (1989)
[3] , and , Computational Fluid Dynamics with Moving Boundaries, Taylor and Francis, London, 1996.
[4] Level Set Methods, Cambridge University Press, Cambridge, 1996.
[5] Fyfe, J. Comput. Phys. 76 pp 349– (1988)
[6] Glimm, SIAM J. Sci. Stat. Comput. 7 pp 230– (1987)
[7] Ashgriz, J. Comput. Phys. 93 pp 449– (1991)
[8] Li, C. R. Acad. Sci. Paris, Série Iib (Paris) 320 pp 391– (1995)
[9] Puckett, J. Comp. Phys. 100 pp 269– (1997)
[10] Sussman, J. Comput. Phys. 114 pp 146– (1994)
[11] Tryggvason, Phys. Fluids 2 pp 656– (1990)
[12] Unverdi, J. Comput. Phys. 100 pp 25– (1992)
[13] and , Lattice-gas Cellular Automata, Cambridge University Press, Cambridge, UK, 1997. · Zbl 0931.76004
[14] Lafaurie, J. Comput. Phys. 113 pp 134– (1994)
[15] and , Computational Methods for Fluid Flow, Springer, New York, 1983. · Zbl 0514.76001
[16] , and , ’Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows applied to pinching threads’, (1997) in preparation.
[17] Guide to Multigrid Development. Multigrid Methods, Springer, Berlin, 1982. · Zbl 0505.65037
[18] A Multigrid Tutorial, SIAM, Philadelphia, 1987. · Zbl 0659.65095
[19] Press, Comput. Phys. pp 514– (1991)
[20] An Introduction to Multigrid Methods, Wiley, Chichester, 1992. · Zbl 0760.65092
[21] Walsh, J. Math. Mech. 11 pp 2– (1962)
[22] and , Numerical Mathematics, Springer, Berlin, 1991. · Zbl 0731.65001
[23] , and , Numerical Recipes, The Art of Scientific Computing, 2nd edn., Cambridge University Press, Cambridge, 1989.
[24] private communication.
[25] and , Fluid Mechanics, Pergamon Press, New York, 1959.
[26] Hydrodynamics, Cambridge University Press, Cambridge, 1932. · JFM 58.1298.05
[27] Cortelezzi, Q. Appl. Math. 38 pp 375– (1981)
[28] Prosperetti, Phys. Fluids 24 pp 1217– (1981) · Zbl 0469.76035
[29] Puckett, J. Comp. Phys.
[30] Brackbill, J. Comput. Phys. 100 pp 335– (1992)
[31] and , ’Computing surface tension with high-order kernels’, in (ed.), Proceedings of the 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, CA, 1995, pp. 6-13. (May be obtained from the author’s web page at http://math.math.ucdavis.edu/puckett/)
[32] Zaleski, Phys. Rev. Lett. 75 pp 244– (1995)
[33] Prosperetti, Annu. Rev. Fluid Mech. 25 pp 577– (1993)
[34] Banner, Ann. Rev. Fluid Mech. 25 pp 373– (1993)
[35] Prosperetti, J. Acoust. Soc. Am. 101 pp 2003– (1997)
[36] Barthes-Biesel, Adv. Hemodyn. Hemorheol. 1 pp 31– (1996)
[37] Halpern, J. Fluid Mech. 203 pp 381– (1989)
[38] Pawar, Phys. Fluids 8 pp 1738– (1996)
[39] Eggers, Phys. Rev. lett. 71 pp 3458– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.