×

zbMATH — the first resource for mathematics

Groundwater pollution by organic compounds: A two-dimensional analysis of contaminant transport in stratified porous media with multiple sources of non-equilibrium partitioning. (English) Zbl 0939.76600

MSC:
76S05 Flows in porous media; filtration; seepage
76M15 Boundary element methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] OECD, ’Biotechnology for a clean environment. Prevention, detection, remediation’, Organisation for Economic Co-Operation and Development, (1994).
[2] Matis, Ground Water 9 pp 57– (1971)
[3] Osgood, Ground Water 12 pp 427– (1974)
[4] and , ’The extent of groundwater contamination in the United States’, Groundwater Contamination, National Academy Press, (1984) pp. 23-44.
[5] Pickens, Water Resour. Res. 17 pp 529– (1981)
[6] Goltz, J. Contaminant Hydrol. 1 pp 77– (1986a)
[7] Borden, J. Contaminant Hydro. 10 pp 309– (1992)
[8] Kookana, Aus. J. Soil Res. 32 pp 635– (1994)
[9] Gaston, J. Environ. Qual. 24 pp 29– (1995)
[10] Brusseau, Water Resour. Res. 27 pp 589– (1991)
[11] Smith, Int. J. Numer. Anal. Meth. Geomech. 17 pp 225– (1993)
[12] Hatfield, J. Environ. Engng.l 119 pp 559– (1993)
[13] Brusseau, CRC Crit. Rev. Environ. Control 19 pp 33– (1989)
[14] Brusseau, Water Resour. Res. 25 pp 1971– (1989)
[15] Coats, Soc. Pet. Engrs. J. 4 pp 73– (1964)
[16] ’A general approach for modeling solute transport in structured soils’, Proc. Hydrogeology of Locks with Low Hydraulic Conductivity, Memories of the International Association of Hydrogeologists, Vol. 17 (part 1), pp. 513-526.
[17] Rao, J. Soil Sci. Soc. 44 pp 684– (1980)
[18] Parker, Water Resour. Res. 22 pp 399– (1986)
[19] Harmon, J. Environ. Engng. 118 pp 666– (1992)
[20] Nkeddi-Kizza, Environ. Sci. Technol. 23 pp 814– (1989)
[21] Van Genuchten, J. Soil Sci. Soc. 40 pp 673– (1976)
[22] Goltz, Water Resour. Res. 22 pp 1139– (1986b)
[23] Leij, J. Hydrol. 151 pp 193– (1993)
[24] Mayer, Water Resour. Res. 32 pp 1551– (1996)
[25] and , Boundary Element Methods in Engineering Science, McGraw-Hill, London, 1981 452 p. · Zbl 0499.73070
[26] The Boundary Element Method for Engineers, Pentech Press, London, 1978 189 p.
[27] and , The Boundary Integral Equation Method for Porous Media Flow, Georges Allen & Unwin, London, (1983) 255 p.
[28] Cruze, J. Math. Anal. Appl. 22 pp 244– (1968) · Zbl 0167.16301
[29] Smith, Int. J. Numer. Anal. Meth. Geomech. 13 pp 283– (1988) · Zbl 0687.73010
[30] ’Boundary integral methods for thermoelastic problems’, Ph.D. Thesis, University of Sydney, (1990) 292 p.
[31] Leo, Int. J. Numer. Anal. Meth. Geomech. 23 pp 1681– (1999) · Zbl 0955.76060
[32] Leo, Int. J. Numer. Anal. Meth. Geomech. 23 pp 1701– (1999)
[33] Rowe, J. Geotech. Engng. 111 pp 479– (1985a)
[34] Rowe, Can. Geotech. J. 22 pp 429– (1985b)
[35] ’Boundary element analysis of contaminant transport in porous media, Ph.D. Thesis, University of Sydney, (1994) 353 p.
[36] Brebbia, Int. J. Soil Dyn. Earthquake Engng. 2 pp 228– (1983)
[37] , and , Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd edn., Cambridge University Press, Cambridge, 1992. · Zbl 0778.65002
[38] Talbot, J. Inst. Math. Appl. 23 pp 97– (1979) · Zbl 0406.65054
[39] Rahman, Int. J. Numer. Anal. Meth. Geomech. 13 pp 37– (1989)
[40] Hatfield, J. Environ. Engng. 119 pp 540– (1993)
[41] ’Non-equilibrium transport parameters from miscible displacement experiments’, Research Report No. 119, U.S. Dept. of Agriculture Science and Educational Administration, U.S. Salinity Laboratory, Riverside, California, (1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.