zbMATH — the first resource for mathematics

Target space duality for \((0,2)\) compactifications. (English) Zbl 0939.32017
Summary: The moduli spaces of two \((0,2)\) compactifications of the heterotic string can share the same Landau-Ginzburg model even though at large radius they look completely different. It was argued that such a pair of \((0,2)\) models might be connected via a perturbative transition at the Landau-Ginzburg point. Situations of this kind are studied for some explicit models. By calculating the exact dimensions of the generic moduli spaces at large radius, strong indications are found in favor of a different scenario. The two moduli spaces are isomorphic and complex, Kähler and bundle moduli get exchanged.

32J81 Applications of compact analytic spaces to the sciences
81T60 Supersymmetric field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory
Full Text: DOI arXiv
[1] Banks, T.; Dixon, L.J.; Friedan, D.; Martinec, E., Phenomenology and conformal field theory, or can string theory predict the weak mixing angle?, Nucl. phys. B, 299, 613, (1988)
[2] Witten, E.; Dine, M.; Seiberg, N.; Wen, X.; Witten, E.; Dine, M.; Seiberg, N.; Wen, X.; Witten, E.; Distler, J.; Distler, J.; Greene, B.R., Aspects of (2,0) string compactifications, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, 304, 1, (1988)
[3] Distler, J.; Kachru, S.; Distler, J., Notes on (0,2) superconformal field theories, Nucl. phys. B, Trieste HEP cosmology, 413, 213, (1994), hep-th/9502012 · Zbl 1007.81505
[4] Distler, J.; Kachru, S., Duality of (0, 2) string vacua, Nucl. phys. B, 442, 64, (1995), hep-th/9501111 · Zbl 0990.81659
[5] Distler, J.; Kachru, S.; Silverstein, E.; Witten, E., Criteria for conformal invariance of (0,2) models, Nucl. phys. B, Nucl. phys. B, 444, 161, (1995), hep-th/9503212 · Zbl 0990.81666
[6] Blumenhagen, R.; Wißkirchen, A.; Blumenhagen, R.; Schimmrigk, R.; Wißkirchen, A.; Blumenhagen, R.; Wißkirchen, A., Exploring the moduli space of (0, 2) strings, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 475, 225, (1996), hep-th/9604140 · Zbl 0925.14004
[7] Distler, J.; Greene, B.R.; Morrison, D.R., Resolving singularities in (0,2) models, Nucl. phys. B, 481, 289, (1996), hep-th/9605222 · Zbl 0925.14011
[8] J. Distler, private communication.
[9] Chiang, T.-M.; Distler, J.; Greene, B.R., Some features of (0, 2) moduli space, Nucl. phys. B, 496, 590, (1997), hep-th/9702030 · Zbl 0951.81061
[10] Berglund, P.; Johnson, C.V.; Kachru, S.; Zaugg, P., Heterotic coset models and (0,2) string vacua, Nucl. phys. B, 460, 252, (1996), hep-th/9509170 · Zbl 0973.14503
[11] M. Kreuzer and M. Nikbakht-Tehrani, (0, 2) string compactifications, Talk at the International Symposium on the 3heory of Elementary Particles, Buckow, August 27-31, hep-th/9611130.
[12] Blumenhagen, R.; Schimmrigk, R.; Wißkirchen, A.; Blumenhagen, R.; Sethi, S.; Blumenhagen, R.; Flohr, M., Aspects of (0,2) orbifolds and mirror symmetry, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, 404, 41, (1997), hep-th/9702199
[13] Greene, B.R.; Plesser, R.; Candelas, P.; Lynker, M.; Schimmrigk, R., Calabi-Yau manifolds in weighted \(P\)_{4}, Nucl. phys. B, Nucl. phys. B, 341, 383, (1990) · Zbl 0962.14029
[14] Candelas, P.; De La Ossa, X.C.; Green, P.S.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. phys. B, 359, 21, (1991) · Zbl 1098.32506
[15] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R.; Batyrev, V.V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Nucl. phys. B, J. alg. geom., 3, 493, (1994), alg-geom/9310003 · Zbl 0829.14023
[16] Kachru, S.; Vafa, C., Exact results for N = 2 compactifications of heterotic strings, Nucl. phys. B, 450, 69, (1995), hep-th/9505105 · Zbl 0957.14509
[17] Kachru, S.; Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C., Non-perturbative results on the point particle limit of N = 2 heterotic string compactifications, Nucl. phys. B, 459, 53, (1996), hep-th/9508155
[18] Sethi, S.; Vafa, C.; Witten, E.; Brunner, I.; Lynker, M.; Schimmrigk, R.; Mayr, P.; Friedman, R.; Morgan, J.; Witten, E.; Bershadsky, M.; Johansen, A.; Pantev, T.; Sadov, V., Four-dimensional compactification of F-theory, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Commun. math. phys., Nucl. phys. B, 505, 165-224, (1997), hep-th/9701165
[19] Strominger, A.; Greene, B.R.; Morrison, D.R.; Strominger, A., Black hole condensation and the unification of string vacua, Nucl. phys. B, Nucl. phys. B, 451, 109, (1995), hep-th/9504145 · Zbl 0908.53041
[20] Distler, J.; Greene, B.R.; Kirklin, K.; Miron, P.; Eastwood, M.G.; Hübsch, T.; Hübsch, T.; Griffiths, P.; Harris, J., Calabi-Yau manifolds, (), 132, 383, (1992), World Scientific Singapore, New York
[21] Witten, E., Phases of N = 2 theories in two dimensions, Nucl. phys. B, 403, 159, (1993), hep-th/9301042 · Zbl 0910.14020
[22] Kachru, S.; Witten, E., Computing the complete massless spectrum of a Landau-Ginzburg orbifold, Nucl. phys. B, 407, 637, (1993), hep-th/9307038 · Zbl 1043.81689
[23] S. Katz and S.A. Strømme, Schubert: a Maple package for intersection theory; J. DeLoera, Puntos.
[24] Candelas, P.; Green, P.S.; Hübsch, T.; Candelas, P.; Green, P.S.; Hübsch, T., Rolling among Calabi-Yau vacua, Phys. rev. lett., Nucl. phys. B, 330, 49, (1990) · Zbl 0985.32502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.