zbMATH — the first resource for mathematics

Three-dimensional Chern-Simons theory as a theory of knots and links. (English) Zbl 0938.81553

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
57M25 Knots and links in the \(3\)-sphere (MSC2010)
81T13 Yang-Mills and other gauge theories in quantum field theory
Full Text: DOI arXiv
[1] Donaldson, S.K., J. diff. geom., 18, 269, (1983)
[2] Polynomial invariants for smooth four-manifolds, Oxford preprint
[3] Witten, E., Commun. math. phys., 117, 353, (1988)
[4] Witten, E., Commun. math. phys., 121, 351, (1989)
[5] Birmingham, D.; Rakowski, M.; Thomson, G.; Baulieu, L.; Grossman, B.; Kaul, R.K.; Rajaraman, R., Nucl. phys., Phys. letts., Phys. letts., B265, 335, (1991)
[6] Atiyah, M.F.; Atiyah, M.F., (), Publ. math. IHES, 68, 175, (1988)
[7] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.B.R.; Millet, K.; Ocneanu, A.; Przytycki, J.H.; Traczyk, K.P., Bull. AMS, Kobe J. math., 4, 115, (1987)
[8] Kaufmann, L., Topology, 26, 395, (1987)
[9] Turaev, V.G., Inv. math., 92, 527, (1988)
[10] Wadati, M.; Deguchi, T.; Akutsu, Y., Phys. rep., 180, 247, (1989), and references therein
[11] A.N. Kirillov and N.Yu. Reshetikhin, Representation algebra U_q(SL(2)), q-orthogonal polynomials and invariants of links, LOMI preprint E-9-88
[12] Gaume, L.Alvarez; Gomez, G.; Sierra, G., Phys. letts., B220, 42, (1989)
[13] L. Alvarez Gaume and G. Sierra, CERN preprint TH.5540/89
[14] Yamagishi, K.; Ge, M-L; Wu, Y-S; Wu, Y.; Yamagishi, K.; Horne, J.H., Lett. math. phys., Int. J. mod. phys., Nucl. phys., B334, 669, (1990)
[15] Kaul, R.; Rajaraman, R., Phys. letts., B249, 433, (1990)
[16] Lickorish, W.B.R.; Millet, K.C., Topology, 26, 107, (1987)
[17] Moore, G.; Seiberg, N., Lectures on RCFT, () · Zbl 0985.81740
[18] Rolfsen, D.; Burde, G.; Zieschang, H., Knots and links, (), (1976), Publish or Perish Berkeley
[19] Labastida, J.M.F.; Ramallo, A.V.; Labastida, J.M.F.; Llatas, P.M.; Ramallo, A.V., Phys. lett., Nucl. phys., B348, 651, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.