Grisaru, M. T.; Nishino, H.; Zanon, D. Beta-functions for the heterotic Green-Schwarz sigma-model. (English) Zbl 0938.81526 Gates, S. J. jun. (ed.) et al., Strings ’88. Proceedings of a workshop, May 24-28, 1988 at University of Maryland, at College Park, Baltimore, MD, USA. Singapore etc.: World Scientific. 349-364 (1989). For the entire collection see [Zbl 0715.53059]. Cited in 4 Documents MSC: 81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory 81T15 Perturbative methods of renormalization applied to problems in quantum field theory PDF BibTeX XML Cite \textit{M. T. Grisaru} et al., in: Strings '88. Proceedings of a workshop, May 24-28, 1988 at the University of Maryland, at College Park, Baltimore, MD, USA. Singapore etc.: World Scientific. 349--364 (1989; Zbl 0938.81526) OpenURL References: [1] Kallosh, R. E.; Rachmanov, M.: Phys. lett.. 209, 233 (1988) [2] Grisaru, M. T.; Nishino, H.; Zanon, D.: Phys. lett.. 206, 625 (1988) [3] Grisaru, M. T.; Howe, P.; Mezincescu, L.; Nilsson, B.; Townsend, P. K.: Phys. lett.. 162, 116 (1985) [4] Atick, J. J.; Dhar, A.; Ratra, B.: Phys. rev.. 33, 2824 (1986) [5] A. Dhar, in Strings, Lattice Gauge Theory, High Energy Phenomenology, V. Singh and S.R. Wadia, eds. (World Scientific) [6] Bergshoeff, E.; Sezgin, E.; Townsend, P. K.: Phys. lett.. 169, 191 (1986) [7] Chapline, G. F.; Manton, N. S.: Phys. lett.. 120, 105 (1983) [8] Tonin, M.: Padova preprint DFPD 9/88. Dfpd 9/88 (1988) [9] Mcarthur, I.: Class. quantum. Grav.. 1, 233 (1984) [10] Grisaru, M. T.; Zanon, D.: Nucl. phys.. 310, 57 (1988) [11] Ellwanger, U.; Fuchs, J.; Schmidt, M. G.: Heidelberg preprint HD-THEP-88-9. Hd-thep-88-9 (1988) [12] Gates, S. J.; Vashakidze, S.: Nucl. phys.. 291, 172 (1987) [13] Batalin, I. A.; Vikovisky, G. A.: Phys. rev.. 28, 2567 (1983) [14] Grisaru, M. T.; Zanon, D.: Brandeis preprint BRX TH-252. Brx th-252 (1988) [15] Gilbert, G.; Johnston, D.: Phys. lett.. 205, 273 (1988) [16] Osborn, H.: Nucl. phys.. 294, 595 (1988) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.