×

zbMATH — the first resource for mathematics

Introduction to “An arbitrary Lagrangian-Eulerian computing method for all flow speeds”. (English) Zbl 0938.76067
Comment to the reprint of the article of C. W. Hirt, A. A. Amsden and J. L. Cook [ibid. 135, No. 2, 203-216 (1997); originally published in ibid. 14, 227-253 (1974; Zbl 0292.76018)].

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
Software:
SHASTA; REMAP3D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hirt, C.W.; Amsden, A.A.; Cook, J.L., An arbitrary lagrangian – eulerian computing method for all flow speeds, J. comput. phys., 14, 227, (1974) · Zbl 0292.76018
[2] Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. methods appl. mech. eng., 99, 235, (1992) · Zbl 0763.73052
[3] Brackbill, J.U.; Pracht, W.E., An implicit, almost-Lagrangian algorithm for magnetohydrodynamics, J. comput. phys., 13, 455, (1973) · Zbl 0288.76050
[4] Kershaw, D.S., The incomplete cholesky – conjugate gradient method for the iterative solution of systems of linear equations, J. comput. phys., 26, 43, (1978) · Zbl 0367.65018
[5] Boris, J.P.; Book, D.L., Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works, J. comput. phys., 11, 38, (1973) · Zbl 0251.76004
[6] Sulsky, D.; Brackbill, J.U., A numerical method for suspension flow, J. comput. phys., 96, 339, (1991) · Zbl 0727.76082
[7] Shashkov, M., Conservative finite-difference methods on general grids, (1996), CRC Press New York · Zbl 0844.65067
[8] Whalen, P.P., Algebraic limitations on two-dimensional hydrodynamics simulations, J. comput. phys., 124, 46, (1995) · Zbl 0849.76079
[9] Margolin, L.G.; Pyun, J.J., A method for treating hourglass patterns, Proceedings, numerical methods in laminar and turbulent flows, (1987), Pineridege Swansea, p. 149-
[10] Dukowicz, J.K.; Meltz, B.J.A., Vorticity errors in multidimensional Langrangian codes, J. comput. phys., 99, 115, (1992) · Zbl 0743.76058
[11] Wallick, K.B., Rezone: A method for automatic rezoning in two-dimensional Lagrangian hydrodynamic problems, Los alamos national laboratory report, LA-10829-MS, (1987)
[12] Wilkins, M.L., Use of artificial viscosity in multidimensional fluid dynamic calculations, J. comput. phys., 36, 281, (1980) · Zbl 0436.76040
[13] Noh, W.F., Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux, J. comput. phys., 72, 78, (1987) · Zbl 0619.76091
[14] Dukowicz, J.K., A general non-iterative Riemann solver for Godunov’s method, J. comput. phys., 61, 119, (1985) · Zbl 0629.76074
[15] Christiansen, R.B., Godunov methods on a staggered mesh—an improved artificial viscosity, Ucrl, JC105269, (1991)
[16] Smolarkiewicz, P.K.; Margolin, L.G., Variational solver for elliptic problems in atmospheric flows, Appl. math comput. sci., 4, 527, (1994) · Zbl 0849.76052
[17] Ramshaw, J.D.; Mesina, G.L., A hybrid pseudocompressibility method for transient incompressible fluid flow, Comput. & fluids, 20, 165, (1991) · Zbl 0731.76052
[18] Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. comput. phys., 118, 131, (1995) · Zbl 0824.65101
[19] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, J. comput. phys., 46, 342, (1982) · Zbl 0489.76007
[20] Dukowicz, J.K., A simplified adaptive mesh technique derived from the moving finite element method, J. comput. phys., 56, 324, (1984) · Zbl 0568.65077
[21] Gelinas, R.J.; Doss, S.K.; Miller, K., The moving finite element method: applications to partial differential equations with multiple large gradients, J. comput. phys., 40, 202, (1981) · Zbl 0482.65061
[22] van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. comput. phys., 23, 276, (1977) · Zbl 0339.76056
[23] Zalesak, S.J., Fully multidimensional flux-corrected transport algorithms for fluids, J. comput. phys., 31, 335, (1979) · Zbl 0416.76002
[24] Sweby, P.K., High-resolution schemes using flux limiters for hyperbolic conservation law, SIAM J. numer. anal., 21, 995, (1984) · Zbl 0565.65048
[25] Leveque, R., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. numer. anal., 33, 627, (1996) · Zbl 0852.76057
[26] Smolarkiewicz, P.K., A fully multidimensional positive-definite advection scheme with small implicit diffusion, J. comput. phys., 54, 325, (1984)
[27] Dukowicz, J.K.; Kodis, J.W., Accurate conservative remapping (rezoning) for arbitrary langrangian – eulerian computations, SIAM J. sci. stat. comput., 8, 305, (1987) · Zbl 0644.76085
[28] Dukowicz, J.K.; Padial, N.T., REMAP3D: A conservative three-dimensional remapping code, Los alamos national laboratory report, LA-12136-MS, (August 1991)
[29] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. comput. phys., 39, 201, (1981) · Zbl 0462.76020
[30] Benson, D.J., Momentum advection on a staggered mesh, J. comput. phys., 100, 143, (1992) · Zbl 0758.76038
[31] Smolarkiewicz, P.K.; Margolin, L.G., On forward-in-time differencing for fluids, Mon. wea. rev., 121, 1847, (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.