zbMATH — the first resource for mathematics

A Roe scheme for ideal MHD equation on 2D adaptively refined triangular grids. (English) Zbl 0937.76043
We present a second-order finite volume method for the solution of two-dimensional ideal MHD equations on adaptively refined triangular meshes. The numerical flux function is based on a multi-dimensional extension of the Roe scheme. If the mesh is composed only of triangles, our scheme is proved to be weakly consistent with the condition \(\nabla\cdot{\mathbf B}=0\). This property fails on a Cartesian grid. The efficiency of our refinement procedure is shown on two-dimensional MHD shock capturing simulations. \(\copyright\) Academic Press.

76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Aslan, N; Kammash, T, Developing numerical fluxes with new sonic fix for MHD equations, J. comput. phys., 133, 43, (1997) · Zbl 0883.76054
[2] Bell, J.B; Colella, P; Trangenstein, J.A, Higher order Godunov method for general systems of hyperbolic conservation laws, J. comput. phys., 82, 362, (1989) · Zbl 0675.65090
[3] Bouchut, F, On the discrete conservation of the gauss – poisson equation of plasma physics, Comm. numer. methods eng., 14, 23, (1998) · Zbl 0903.76056
[4] Brio, M; Wu, C.C, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. comput. phys., 75, 400, (1988) · Zbl 0637.76125
[5] Cargo, P, Nouveaux modèles numériques pour l’hydrodynamique atmosphérique et la magnétohydrodynamique idéale, (1995)
[6] Cargo, P; Gallice, G, Roe matrices for ideal MHD and systematic construction of roe matrices for systems of conservation laws, J. comput. phys., 136, 446, (1997) · Zbl 0919.76053
[7] Croisille, J.P; Khanfir, R; Chanteur, G, Numerical simulation of the MHD equations by a kinetic-type method, J. sci. comput., 10, 81, (1995) · Zbl 0839.76062
[8] Dai, W; Woodward, P, An approximate Riemann solver for ideal magnetohydrodynamics, J. comput. phys., 111, 354, (1994) · Zbl 0797.76052
[9] Dai, W; Woodward, P, Extension of the piecewise parabolic method to multidimensional ideal magnetohydrodynamics, J. comput. phys., 115, 485, (1994) · Zbl 0813.76058
[10] Dubois, F; Mehlman, G, A non parameterized entropy fix for Roe’s method, Aiaa j., 31, 199, (1993) · Zbl 0784.76059
[11] Gallice, G, Système d’euler – poisson, magnétohydrodynamique et schéma de roe, (1997)
[12] Gombosi, T.I; Powell, K.G; De Zeeuw, D.L, Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results, J. geophys. res., 99, 21,525, (1994)
[13] Harten, A, High resolution schemes for hyperbolic conservations laws, J. comput. phys., 49, 357, (1983) · Zbl 0565.65050
[14] Powell, K.G, An approximate Riemann solver for magnetohydrodynamics, (1994)
[15] Progress and challenges in CFD methods and algorithms, Proc. 77th Fluid Dyn. Panel Symp, Agard Conf. Proc, 578, 1996
[16] Schmidt-Voigt, M, Time-dependent MHD simulations for cometary plasmas, Astron. astrophys., 210, 433, (1989) · Zbl 0661.76129
[17] Tanaka, T, Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: calculation by a new MHD simulation scheme, J. geophys. res., 98, 17,251, (1993)
[18] Villedieu, P, Analyse numérique appliquée à la mécanique des fluides, (1995)
[19] Woods, L.C, Principles of magnetoplasma dynamics, (1987)
[20] Yee, H.C; Klopper, G.H; Montagné, J.L, High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows, J. comput. phys., 88, 31, (1990) · Zbl 0697.76079
[21] Zachary, A.L; Colella, P, A higher-order Godunov method for the equations of ideal magnetohydrodynamics, J. comput. phys., 99, 341, (1992) · Zbl 0744.76092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.