×

Superlinear indefinite elliptic problems and Pohozyaev type identities. (English) Zbl 0937.35060

In this paper one seeks nonzero solutions for the Dirichlet problem \(-\Delta u=\mu u+a(x)g(u),\) \(u\in H^1_0(\Omega)\), where \(\Omega\) is a bounded domain in \(\text{ I R}^N\), \(\mu>0\), \(a\in C^2(\overline\Omega)\) changes sign in \(\Omega\) and \(g\) is superlinear both at zero and at infinity. Under a hypothesis implying that the zero set \(\Omega^0=\{x\in\overline\Omega:a(x)=0\}\) has Lebesgue measure zero, the authors prove that the above problem has a nonzero solution.
Reviewer: C.Popa (Iaşi)

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alama, S.; Tarantello, G., On semilinear elliptic equations with indefinite nonlinearities, Cal. Var. Partial Differential Equations, 1, 439-475 (1993) · Zbl 0809.35022
[2] S. Alama, G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, 1994; S. Alama, G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, 1994 · Zbl 0860.35032
[3] S. Alama, M. Del Pino, Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, 1995; S. Alama, M. Del Pino, Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, 1995 · Zbl 0851.35037
[4] M. Badiale, Infinitely many solutions for some indefinite nonlinear elliptic problems, 1995; M. Badiale, Infinitely many solutions for some indefinite nonlinear elliptic problems, 1995 · Zbl 0949.35051
[5] M. Badiale, E. Nabana, A remark on multiplicity of solutions for semi-linear elliptic problems with indefinite nonlinearity, 1995; M. Badiale, E. Nabana, A remark on multiplicity of solutions for semi-linear elliptic problems with indefinite nonlinearity, 1995 · Zbl 0857.35041
[6] Bahri, A.; Lions, P. L., Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., 45, 1205-1215 (1992) · Zbl 0801.35026
[7] Berestycki, H.; Capuzzo Dolcetta, I.; Nirenberg, L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4, 59-78 (1994) · Zbl 0816.35030
[8] Berestycki, H.; Capuzzo Dolcetta, I.; Nirenberg, L., Variational methods for indefinite superlinear homogeneous elliptic systems, NoDEA, 2, 533-572 (1995) · Zbl 0840.35035
[9] Butler, G. J., Rapid oscillation, nonextendability, and the existence of periodic solutions to second order nonlinear ordinary differential equations, J. Differential Equations, 22, 467-477 (1976) · Zbl 0299.34050
[10] Gidas, B.; Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6, 883-901 (1981) · Zbl 0462.35041
[11] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0691.35001
[12] Kavian, O., Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques (1993), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0797.58005
[13] Lazer, A. C.; Solimini, S., Nontrivial solutions of operator equations and Morse indices of critical points of min-max type, Nonlinear Anal., 12, 761-775 (1988) · Zbl 0667.47036
[14] Liu, J. Q.; Li, S., Some existence theorems on multiple critical points and their applications, Kexue Tongbao Chinese, 17 (1984)
[15] Li, S.; Willem, M., Applications of local linking to critical point theory, J. Math. Anal. Appl., 189, 6-32 (1995) · Zbl 0820.58012
[16] M. Ramos, Linking theorems in critical point theory, University of Lisbon, 1993; M. Ramos, Linking theorems in critical point theory, University of Lisbon, 1993 · Zbl 0964.58011
[17] Ramos, M.; Sanchez, L., Homotopical linking and Morse index estimates in min-max theorems, Manuscripta Math., 87, 269-284 (1995) · Zbl 0834.58015
[18] Ramos, M.; Terracini, S.; Troesler, C., Problèmes elliptiques surlinéaires avec nonlinéarité sans signe défini, C. R. Acad. Sci. Paris Sér. I, 35, 283-286 (1997)
[19] Willem, M., Minimax Theorems. Minimax Theorems, Progr. Nonlinear Differential Equations Appl., 24 (1996), Birkhäuser: Birkhäuser Boston · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.