zbMATH — the first resource for mathematics

The effect of the slip boundary condition on the flow of fluids in a channel. (English) Zbl 0936.76013
Summary: The assumption that a liquid adheres to a solid boundary (“no-slip” boundary condition) is one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assumption does not hold. In this paper we investigate the consequences of slip at the wall on the flow of a linearly viscous fluid in a channel. Usually, the slip is assumed to depend on the shear stress at the wall. However, a number of experiments suggests that the slip velocity also depends on the normal stress. Thus, we investigate the flow of a linearly viscous fluid when the slip depends on both the shear stress and the normal stress. In regions where the slip velocity depends strongly on the normal stress, the flow field in a channel is not fully developed, and rectilinear flow is not possible. Also, we show that, in general, traditional methods such as the Mooney method cannot be used for calculating the slip velocity.

76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Navier, C. L. M. H.: Sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr.6, 389-440 (1827).
[2] Helmholtz, H., Pitrowski, G. v.: Über Reibung tropfbarer Flüssigkeiten. Wissenschaftliche AbhandlungenI, 172-222, Leipzig 1882.
[3] Maxwell, J. C.: On stresses in rarified gases arising from inequalities in temperature. In: The scientific papers of James Clerk Maxwell (Niven, W. D., ed.) VolumeII, pp. 681-712. Cambridge: Cambridge University Press 1890.
[4] Kundt, A., Warburg, E.: Über Reibung und Wärmeleitung verdünnter Gase. Ann. Phys. Chem.155, 337-365 (1875). · JFM 07.0685.01
[5] Kundt, A., Warburg, E.: Über specifische Wärme des Quecksilbergases. Ann. Phys. Chem.157, 353-364 (1876). · JFM 08.0718.01
[6] Kennard, E. H.: Kinetic theory of gases. New York: McGraw Hill 1938.
[7] Stokes, C. G.: Mathematical and physical papers, vol. 1. Cambridge: Cambridge University Press 1880. · Zbl 0171.24801
[8] Day, M. A.: The no-slip boundary condition in fluid mechanics. Erkenntnis33, 285-296 (1990).
[9] Denn, M. M.: Issues in viscoelastic fluid mechanics. Ann. Rev. Fluid Mech.22, 13-34 (1990).
[10] Vinogradov, G. V., Malkin, A. Ya., Yanovskii, Yu. G., Borisenkova, E. K., Yarlykov, B. V., Brezhnaya, G. V.: Viscoelastic properties and flow of narrow distribution polybutadienes and polyisopropenes. J. Polymer Sci. Part A-2,10, 1061-1084 (1972).
[11] Petrie, C. J. S., Denn, M. M.: Instabilites in polymer processing. AIChE J.22, 209-236 (1976).
[12] Kolkka, R. W., Malkus, D. S., Hansen, M. G., Ierly, G. R., Worthing, R. A.: Spurt phenomena for the Johnson-Segalman fluid and related models. J. Non-Newtonian Fluid Mech.29, 303-335 (1988).
[13] McLeish, T. C. B., Ball, R. C.: A molecular approach to the spurt effect in polymer melt flow. J. Polymer Sci., Part B,24, 1735-1745 (1986).
[14] Malkus, D. S., Nohel, J. A., Plohr B. J.: Dynamics of shear flow of a non-Newtonian fluid. J. Comp. Phys.87, 464-487 (1990). · Zbl 0693.76008
[15] Malkus, D. S., Nohel, J. A., Plohr, B. J.: Analysis of a new phenomenon in shear flow of non-Newtonian fluids. SIAM J. Appl. Math.51, 899-929 (1991). · Zbl 0791.34050
[16] Rao, I. J., Rajagopal, K. R.: Some simple flows of a Johnson-Segalman fluid. Acta Mech.132, 209-219 (1999). · Zbl 0928.76012
[17] Rao, I. J.: Flow of a Johnson-Segalman fluid between rotating co-axial cylinders with and without suction. Int. Non-Linear Mech.34, 63-70 (1999). · Zbl 1342.76010
[18] Hatzikiriakos, S. G., Dealy, J. M.: Role of slip and fracture in the oscillatory flow of HDPE in a capillary. J. Rheol.36, 845-884 (1992).
[19] Mooney, M.: Explicit formulae for slip and fluidity. J. Rheol.2, 210-222 (1931).
[20] Hatzikiriakos, S. G., Dealy, J. M.: Wall slip of molten high density polyethylene I. Sliding plate rheometer studies. J. Rheol.35, 497-523 (1991).
[21] Hatzikiriakos, S. G., Dealy, J. M.: Wall slip of molten high density polyethylene’s II. Capillary rheometer studies. J. Rheol.36, 703-741 (1992).
[22] Ramamurthy, A. V.: Wall slip in viscous fluids and influence of material construction. J. Rheol.30, 337-357 (1986).
[23] Kraynik, A. M., Schowalter, W. R.: Slip at the wall and extrudate roughness with aqueous solutions of polyvinyl alcohol and sodium borate. J. Rheol.25, 95-114 (1981).
[24] Lim, F. J., Schowalter, W. R.: Wall slip of narrow molecular weight distribution polybutadienes. J. Rheol.33, 1359-1382 (1989).
[25] Atwood, B. T., Schowalter, W. R.: Measurement of slip at the wall during the flow of high density polyethylene through a rectangular conduit. Rheol. Acta28, 134-146 (1989).
[26] Migler, K. B., Hervet, H., Leger, L.: Slip transition of a polymer melt under shear stress. Phys. Rev. Lett.70, 287-290 (1993).
[27] Migler, K. B., Massey, G., Hervet, H., Leger, L.: The slip transition at the polymer-solid interface. J. Phys. Condens. Matter6, A301-304 (1994).
[28] Vinogradov, G. V., Ivanova, L. I.: Wall slippage and elastic turbulence of polymers in the rubbery state. Rheol. Acta7, 243-254 (1968).
[29] White, J. L., Han, M. H., Nakajima, N., Brzoskowski, R.: The influence of materials of construction on biconical rotor and considerations of slippage. J. Rheol.35, 167-189 (1991).
[30] Person, T. J., Denn, M. M.: The effect of die materials and pressure-dependent slip on the extrusion of linear low-density polyethylene. J. Rheol.41, 249-265 (1997).
[31] Georgiou, C. G., Crochet, M. J.: Compressible viscous flow in slits with slip at the wall. J. Rheol.38, 639-654 (1994).
[32] Sillman, W. J., Scriven, L. E.: Separating flow near a static contact line: slip at a wall and shape of a free surface. J. Comp. Phys.34, 287-313 (1980). · Zbl 0486.76064
[33] Torres, A., Hrymak, A. N., Vlachopoulos, J., Dooley, J., Hilton, B. T.: Boundary conditions for contact lines in coextrusion flows. Rheol. Acta35, 513-525 (1993).
[34] Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. Comput.22, 745-762 (1968). · Zbl 0198.50103
[35] Fletcher, C. A. J.: Computational techniques for fluid dynamics, vol. II. Berlin Heidelberg New York Tokyo: Springer 1991. · Zbl 0717.76001
[36] Van Leer, B.: Flux-vector splitting for the Euler equations. Lecture Notes in Physics, vol. 70, 507-512 (1982).
[37] Chauffoureaux, J. C., Dehennau, C., Van Rijckevorsel, J.: Flow and thermal instability of rigid PVC. J. Rheol.23, 1-24 (1979).
[38] Lau, H. C., Schowalter, W. C.: A model for adhesive failure of viscoelastic fluids during flow. J. Rheol.30, 193-206 (1986). · Zbl 0591.76009
[39] Cohen, Y., Metzner, A. B.: Apparent slip flow of polymer solutions. J. Rheol.29, 67-102 (1985).
[40] Serrin, J.: Mathematical principles of classical fluid mechanics. In: Encyclopedia of Physics, vol. III/1 (Flügge, S., Truesdell, C., eds.). Berlin: Springer 1959. · Zbl 0086.20001
[41] Consiglieri, L.: Stationary solutions for a Bingham flow with nonlocal friction. In: Mathematical topics in fluid mechanics (Rodrigues, J., Sequeira A., eds.). Pitman Research Notes in Mathematics,274. Essex: Longman Scientific and Technical 1992.
[42] Fujita, H.: A mathematical analysis of motions of viscous incompressible fluids under leak or slip boundary conditions. Surikaisekikenenkyusho Kokyuroko734, 123-142 (1990).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.