×

zbMATH — the first resource for mathematics

New integrable systems of derivative nonlinear Schrödinger equations with multiple components. (English) Zbl 0936.37043
Summary: The Lax pair for a derivative nonlinear Schrödinger equation proposed by Chen-Lee-Liu is generalized into matrix form. This gives new types of integrable coupled derivative nonlinear Schrödinger equations. By virtue of a gauge transformation, a new multi-component extension of a derivative nonlinear Schrödinger equation proposed by Kaup-Newell is also obtained.

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q55 NLS equations (nonlinear Schrödinger equations)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kaup, D.J.; Newell, A.C., J. math. phys., 19, 798, (1978)
[2] Chen, H.H.; Lee, Y.C.; Liu, C.S., Phys. scr., 20, 490, (1979)
[3] Wadati, M.; Sogo, K., J. phys. soc. jpn., 52, 394, (1983)
[4] Kundu, A., J. math. phys., 25, 3433, (1984)
[5] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991. · Zbl 0762.35001
[6] Manakov, S.V., Sov. phys. JETP, 38, 248, (1974)
[7] Fordy, A.P.; Kulish, P.P., Commun. math. phys., 89, 427, (1983)
[8] Yajima, N.; Oikawa, M., Prog. theor. phys., 54, 1576, (1975)
[9] Tsuchida, T.; Wadati, M., J. phys. soc. jpn., 67, 1175, (1998)
[10] Tsuchida, T.; Ujino, H.; Wadati, M., J. math. phys., 39, 4785, (1998)
[11] Tsuchida, T.; Ujino, H.; Wadati, M., J. phys. A, 32, 2239, (1999)
[12] Morris, H.C.; Dodd, R.K., Phys. scr., 20, 505, (1979)
[13] Fordy, A.P., J. phys. A, 17, 1235, (1984)
[14] Yajima, T., J. phys. soc. jpn., 64, 1901, (1995)
[15] Svinolupov, S.I., Commun. math. phys., 143, 559, (1992)
[16] Svinolupov, S.I., Func. anal. appl., 27, 257, (1993)
[17] Svinolupov, S.I.; Sokolov, V.V., Theor. math. phys., 100, 959, (1994)
[18] I.T. Habibullin, V.V. Sokolov, R.I. Yamilov, Multi-component integrable systems and nonassociative structures, in Nonlinear Physics: Theory and Experiment, World Scientific, Singapore, 1996, p. 139. · Zbl 0941.37523
[19] Olver, P.J.; Sokolov, V.V., Commun. math. phys., 193, 245, (1998)
[20] M. Hisakado, Chiral solitons from dimensional reduction of Chern-Simons gauged coupled non-linear Schrödinger model, hep-th/9712255.
[21] Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., Phys. rev. lett., 31, 125, (1973)
[22] Zakharov, V.E.; Shabat, A.B., Func. anal. appl., 8, 226, (1974)
[23] Ablowitz, M.J.; Haberman, R., J. math. phys., 16, 230, (1975)
[24] Wadati, M.; Konno, K.; Ichikawa, Y., J. phys. soc. jpn., 46, 1965, (1979)
[25] Tsuchida, T.; Wadati, M., J. phys. soc. jpn., 65, 3153, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.