Neumann, Peter M.; Praeger, Cheryl E. Derangements and eigenvalue-free elements in finite classical groups. (English) Zbl 0936.15020 J. Lond. Math. Soc., II. Ser. 58, No. 3, 564-586 (1998). One of the questions addressed in this paper is: given the matrix ring \(M(n,q)\) of \(n\times n\) matrices over the field \(F_q\) with \(q\) elements, what is the probability \(\upsilon(M;n,q)\) that a randomly chosen matrix has no eigenvalues? Regarding different \(M\), the authors derive asymptotic expressions for \(\upsilon\), in the limit \(n\to\infty\), that has as the leading term \(e^{-1}\). Reviewer: Alexei Khorunzhy (Khar’kov) Cited in 13 Documents MSC: 15B52 Random matrices (algebraic aspects) 20G40 Linear algebraic groups over finite fields Keywords:derangements; eigenvalue-free elements; random matrices; finite classical groups; Euler’s generating functions; finite field; matrix ring PDF BibTeX XML Cite \textit{P. M. Neumann} and \textit{C. E. Praeger}, J. Lond. Math. Soc., II. Ser. 58, No. 3, 564--586 (1999; Zbl 0936.15020) Full Text: DOI