Kato, Takeshi; Masry, Elias On the spectral density of the wavelet transform of fractional Brownian motion. (English) Zbl 0934.62097 J. Time Ser. Anal. 20, No. 5, 559-563 (1999). The authors consider the fractional Brownian motion process \(\{X(t),\;t\in R\}.\) The wavelet transform at scale \(a>0:\) \[ W_a(t)=a^{-1/2}\int_{-\infty}^{+\infty}X(u)\overline{\psi}((u-t)/a)du \] is studied. Conditions for the existence of the spectral density \(f_{W_a}(\lambda)\) and an expression for it are given. Reviewer: A.Ya.Olenko (Kyïv) Cited in 2 Documents MSC: 62M15 Inference from stochastic processes and spectral analysis Keywords:wavelet transforms; fractional Brownian motion; existence of spectral density PDF BibTeX XML Cite \textit{T. Kato} and \textit{E. Masry}, J. Time Ser. Anal. 20, No. 5, 559--563 (1999; Zbl 0934.62097) Full Text: DOI