×

zbMATH — the first resource for mathematics

Sieve bootstrap for smoothing in nonstationary time series. (English) Zbl 0934.62039
Summary: We propose a sieve bootstrap procedure for time series with a deterministic trend. The sieve for constructing the bootstrap is based on nonparametric trend estimation and autoregressive approximation for some noise process. The bootstrap scheme itself does i.i.d. resampling of estimated innovations from fitted autoregressive models.
We show the validity and indicate second-order correctness of such sieve bootstrap approximations for the limiting distribution of nonparametric linear smoothers. The resampling can then be used to construct nonparametric confidence intervals for the underlying trend. In particular, we show asymptotic validity for constructing confidence bands which are simultaneous within a neighborhood of size of the order of the smoothing bandwidth.
Our resampling procedure yields satisfactory results in a simulation study for finite sample sizes. We also apply it to the longest series of total ozone measurements from Arosa (Switzerland) and find a significant decreasing trend.

MSC:
62G09 Nonparametric statistical resampling methods
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G08 Nonparametric regression and quantile regression
62G15 Nonparametric tolerance and confidence regions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristics. Springer, New York. · Zbl 0679.60013
[2] Altman, N. S. (1990). Kernel smoothing of data with correlated errors. J. Amer. Statist. Assoc. 85 749-759. JSTOR: · links.jstor.org
[3] An, H. Z., Chen, Z.-G. and Hannan, E. J. (1982). Autocorrelation, autoregression and autoregressive approximation. Ann. Statist. 10 926-936. (Correction: Ann. Statist. 11 1018.) · Zbl 0512.62087 · doi:10.1214/aos/1176345882
[4] Bickel, P. J. and B ühlmann, P. (1995). Mixing property and functional central limit theorems for a sieve bootstrap in time series. Technical Report 440, Dept. Statistics, Univ. California, Berkeley. · Zbl 0954.62102
[5] Bickel, P. J. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates. Ann. Statist. 1 1071-1095. · Zbl 0275.62033 · doi:10.1214/aos/1176342558
[6] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[7] Bose, A. (1988). Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16 1709- 1722. · Zbl 0653.62016 · doi:10.1214/aos/1176351063
[8] Brillinger, D. R. (1988). An elementary trend analysis of Rio Negro levels at Manaus, 1903- 1985. Revista Brasileira de Probabilidade e Estatística 2 63-79. · Zbl 0715.62175
[9] Brillinger, D. R. (1996). Some uses of cumulants in wavelet analysis. J. Nonparametr. Statist. 6 93-114. · Zbl 0879.62027 · doi:10.1080/10485259608832666
[10] Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and Methods. Springer, New York. · Zbl 0604.62083
[11] B ühlmann, P. (1995). Moving-average representation for autoregressive approximations. Stochastic Process. Appl. 60 331-342. · Zbl 0847.60027 · doi:10.1016/0304-4149(95)00061-5
[12] B ühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli 3 123-148. · Zbl 0874.62102 · doi:10.2307/3318584
[13] Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. J. Amer. Statist. Assoc. 88 1287-1301. JSTOR: · Zbl 0792.62030 · doi:10.2307/2291269 · links.jstor.org
[14] Fan, J. (1993). Local linear smoothers and their minimax efficiency. Ann. Statist. 21 196-216. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[15] Freedman, D. (1984). On bootstrapping two-stage least-squares estimates in stationary linear models. Ann. Statist. 12 827-842. · Zbl 0542.62051 · doi:10.1214/aos/1176346705
[16] Gasser, T. and M üller, H.-G. (1979). Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, eds.). Springer, Berlin. · Zbl 0418.62033 · doi:10.1007/BFb0098489
[17] Gasser, T. and M üller, H.-G. (1984). Estimating regression functions and their derivatives by the kernel method. Scand. J. Statist. 11 171-185. · Zbl 0548.62028
[18] Gasser, T., M üller, H.-G. and Mammitzsch, V. (1985). Kernels for nonparametric curve estimation. J. Roy. Statist. Soc. Ser. B 47 238-252. JSTOR: · Zbl 0574.62042 · links.jstor.org
[19] Hall, P. (1992). On bootstrap confidence intervals in nonparametric regression. Ann. Statist. 20 695-711. · Zbl 0765.62049 · doi:10.1214/aos/1176348652
[20] Hall, P. and Hart, J. D. (1990). Nonparametric regression with long-range dependence. Stochastic Process. Appl. 36 339-351. · Zbl 0713.62048 · doi:10.1016/0304-4149(90)90100-7
[21] Hannan, E. J. and Kavalieris, L. (1986). Regression, autoregression models. J. Time Series Anal. 7 27-49. · Zbl 0588.62163 · doi:10.1111/j.1467-9892.1986.tb00484.x
[22] Härdle, W. and Bowman, A. W. (1988). Bootstrapping in nonparametric regression: local adaptive smoothing and confidence bands. J. Amer. Statist. Assoc. 83 102-110. JSTOR: · Zbl 0644.62047 · doi:10.2307/2288926 · links.jstor.org
[23] Härdle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist. 19 778-796. · Zbl 0725.62037 · doi:10.1214/aos/1176348120
[24] Härdle, W. and Tuan, P.-D. (1986). Some theory of M-smoothing of time series. J. Time Series Anal. 7 191-204. · Zbl 0607.62116 · doi:10.1111/j.1467-9892.1986.tb00502.x
[25] Hart, J. D. (1991). Kernel regression estimation with time series errors. J. Roy. Statist. Soc. Ser. B 53 173-187. JSTOR: · Zbl 0800.62215 · links.jstor.org
[26] Hart, J. D. (1994). Automated kernel smoothing of dependent data using time series crossvalidation. J. Roy. Statist. Soc. Ser. B 56 529-542. JSTOR: · Zbl 0800.62224 · links.jstor.org
[27] Herrmann, E., Gasser, T. and Kneip, A. (1992). Choice of bandwidth for kernel regression when residuals are correlated. Biometrika 79 783-795. JSTOR: · Zbl 0765.62044 · doi:10.1093/biomet/79.4.783 · links.jstor.org
[28] Kreiss, J.-P. (1988). Asy mptotic statistical inference for a class of stochastic processes. Habilitationsschrift, Fachbereich Mathematik, Univ. Hamburg.
[29] K ünsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217-1241. · Zbl 0684.62035 · doi:10.1214/aos/1176347265
[30] Nadaray a, E. A. (1964). On estimating regression. Theory Probab. Appl. 10 186-190.
[31] Shibata, R. (1980). Asy mptotically efficient selection of the order of the model for estimating parameters of a linear process. Ann. Statist. 8 147-164. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., · Zbl 0425.62069 · doi:10.1214/aos/1176344897
[32] Giroud, M. and Schill, H. (1997). Total ozone series at Arosa (Switzerland): homogenization and data comparison. Journal of Geophy ical Research.
[33] Staehelin, J., Kegel, R. and Harris, N. R. P. (1997). Trend analysis of the homogenised total ozone series of Arosa (Switzerland), 1926-1996. Journal of Geophysical Research.
[34] Subba Rao, T. and Gabr, M. M. (1980). A test for linearity of stationary time series. J. Time Series Anal. 1 145-158. · Zbl 0499.62078 · doi:10.1111/j.1467-9892.1980.tb00308.x
[35] Truong, Y. K. (1991). Nonparametric curve estimation with time series errors. J. Statist. Plann. Inference 28 167-183. · Zbl 0734.62047 · doi:10.1016/0378-3758(91)90024-9
[36] Watson, G. S. (1964). Smooth regression analysis. Sankhy\?a Ser. A 26 359-372. · Zbl 0137.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.