zbMATH — the first resource for mathematics

On embeddings of logarithmic Bessel potential spaces. (English) Zbl 0934.46036
The fractional Sobolev spaces \(H^s_p(\mathbb{R}^n)= J_{-s}L_p(\mathbb{R}^n)\) can be obtained from the Lebesgue spaces \(L_p(\mathbb{R}^n)\), \(1< p<\infty\), by application of the Bessel-potential operator \(J_{-s}\). The authors study in detail corresponding spaces where \(L_p\) is replaced by \(L_{p,q}\prod_j\log^{\alpha_j}_k(L)\), where \(L_{p,q}\) are the Lorentz spaces and \(\log_k(L)\) are iterated log-refinements with the Zygmund spaces \(L_p(\log L)^\alpha(\mathbb{R}^n)\) as an example. The indicated basic spaces also considered for their own sake (embeddings, duality, etc.). As for \(H^s L_{p,q}\prod_j \log^{\alpha_j}_k(L)\) embeddings are treated. Special attention is paid to limiting situations. Then spaces of type \(\exp\dots\exp(L)\), generalizing Trudinger spaces, come in. Also limiting embeddings in critical Hölder spaces are considered.
Reviewer: H.Triebel (Jena)

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI
[1] R. A. Adams, 1975, Sobolev Spaces, Academic Press, New York · Zbl 0314.46030
[2] Aronszajn, N.; Smith, K.T., Theory of Bessel potentials, I, Ann. inst. Fourier, 11, 385-475, (1961) · Zbl 0102.32401
[3] Bennett, C.; Rudnick, K., On lorentz – zygmund spaces, Dissertationes math., 175, 1-72, (1980)
[4] Bennett, C.; Sharpley, R., Pure and applied mathematics, Vol. 129, (1988)
[5] Brézis, H.; Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. partial differential equations, 5, 773-789, (1980) · Zbl 0437.35071
[6] Edmunds, D.E.; Gurka, P.; Opic, B., Double exponential integrability of convolution operators in generalized lorentz – zygmund spaces, Indiana univ. math. J., 44, 19-43, (1995) · Zbl 0826.47021
[7] Edmunds, D.E.; Gurka, P.; Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Studia math., 115, 151-181, (1995) · Zbl 0829.47024
[8] Edmunds, D.E.; Gurka, P.; Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. roy. soc. Edinburgh, 126A, 995-1009, (1996) · Zbl 0860.46024
[9] Edmunds, D.E.; Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. math., 21, 119-128, (1995) · Zbl 0835.46027
[10] Edmunds, D.E.; Triebel, H., Logarithmic Sobolev spaces and their applications to spectral theory, Proc. London math. soc., 71, 333-371, (1995) · Zbl 0835.46028
[11] Evans, W.D.; Opic, B.; Pick, L., Interpolation of operators on scales of generalized lorentz – zygmund spaces, Math. nachr., 182, 127-181, (1996) · Zbl 0865.46016
[12] Fusco, N.; Lions, P.L.; Sbordone, C., Sobolev imbedding theorems in borderline cases, Proc. amer. math. soc., 124, 561-565, (1996) · Zbl 0841.46023
[13] Kufner, A.; John, O.; Fučı́k, S., Function spaces, (1977), Academia Prague
[14] Milman, M., Extrapolation and optimal decompositions with applications to analysis, Lecture notes in mathematics, Vol. 1580, (1994), Springer-Verlag Berlin
[15] O’Neil, R., Convolution operators andLpq, Duke math. J., 30, 129-142, (1963) · Zbl 0178.47701
[16] Opic, B.; Kufner, A., Hardy-type inequalities, Pitman research notes in mathematics, Vol. 219, (1990), Longman Harlow
[17] B. Opic, L. Pick, On generalized Lorentz-Zygmund spaces · Zbl 0956.46020
[18] Stein, E.M., Singular integrals and differentiability properties of functions, (1970), Princeton Univ. Press Princeton · Zbl 0207.13501
[19] Trudinger, N.S., On imbeddings into Orlicz spaces and some applications, J. math. mech., 17, 473-484, (1967) · Zbl 0163.36402
[20] Ziemer, W., Weakly differentiable functions, Graduate texts in mathematics, Vol. 120, (1989), Springer-Verlag Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.