×

zbMATH — the first resource for mathematics

A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. (English) Zbl 0933.76055
We present a method for solving the equations governing time-dependent, variable density incompressible flow in two or three dimensions on an adaptive hierarchy of grids. The method is based on a projection formulation in which we first solve advection-diffusion equations to predict intermediate velocities, and then project these velocities onto a space of approximately divergence-free vector fields. Our treatment of the first step uses a specialized second-order upwind method for differencing the nonlinear convection terms that provides a robust treatment of these terms suitable for inviscid and high Reynolds number flow. Density and other scalars are advected in such a way as to maintain conservation, if appropriate, and free-stream preservation. Numerical examples demonstrate the algorithms’s accuracy and convergence properties. \(\copyright\) Academic Press.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Software:
Wesseling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H., An adaptive projection method for the incompressible Euler equations, 11th AIAA Computational Fluid Dynamics Conference, (1993)
[2] Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M., A high-resolution adaptive projection method for regional atmospheric modeling, Proceedings of the U.S. EPA NGEMCOM Conference, (1995)
[3] Almgren, A. S.; Bell, J. B.; Howell, L. H.; Colella, P., An adaptive projection method for the incompressible navier – stokes equations, Proceedings of the IMACS 14th World Conference, (1994)
[4] Almgren, A. S.; Bell, J. B.; Szymczak, W. G., A numerical method for the incompressible navier – stokes equations based on an approximate projection, SIAM J. Sci. Comput., 17, (1996) · Zbl 0845.76055
[5] Bell, J. B.; Berger, M. J.; Saltzman, J. S.; Welcome, M., Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws, (1991)
[6] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible navier – stokes equations, J. Comput. Phys., 85, 257, (1989) · Zbl 0681.76030
[7] Bell, J. B.; Colella, P.; Howell, L. H., An efficient second-order projection method for viscous incompressible flow, 10th AIAA Computational Fluid Dynamics Conference, (1991)
[8] Bell, J. B.; Marcus, D. L., A second-order projection method for variable-density flows, J. Comput. Phys., 101, 334, (1992) · Zbl 0759.76045
[9] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64, (1989) · Zbl 0665.76070
[10] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484, (1984) · Zbl 0536.65071
[11] Berger, M. J.; Rigoustsos, I., An Algorithm for Point Clustering and Grid Generation, (1991)
[12] Brown, G. L.; Roshko, A., On density effects and large structure in turbulent mixing layers, J. Fluid Mech., 64, 775, (1974) · Zbl 1416.76061
[13] Chien, K.-Y.; Ferguson, R. E.; Kuhl, A. L.; Glaz, H. M.; Colella, P., Inviscid dynamics of two-dimensional shear layers, Comput. Fluid Dyn., 5, 59, (1995)
[14] Clark, Terry L.; Farley, R. D., Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness, J. Atmos. Sci., 41, 329, (1984)
[15] Colella, P., A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. Comput., 6, 104, (1985) · Zbl 0562.76072
[16] Colella, P., A multidimensional second order Godunov scheme for conservation laws, J. Comput. Phys., 87, 171, (1990)
[17] Howell, L. H.; Bell, J. B., An adaptive-mesh projection method for viscous incompressible flow, SIAM J. Sci. Comput., 18, 996, (1997) · Zbl 0901.76057
[18] Konrad, J. H., An Experimental Investigation of Mixing in Two-Dimensional Turbulent Shear Flows with Applications to Diffusion-Limited Chemical Reactions, (1977)
[19] McCormick, S. F., Multilevel Adaptive Methods for Partial Differential Equations, (1989) · Zbl 0707.65080
[20] Minion, M. L., On the stability of Godunov-projection methods for incompressible flow, J. Comput. Phys., 123, 435, (1996) · Zbl 0848.76050
[21] Minion, M. L., A projection method for locally refined grids, J. Comput. Phys., 127, 158, (1996) · Zbl 0859.76047
[22] Monkewitz, P. A.; Huerre, P., Influence of the velocity ratio on the spatial instability of mixing layers, J. Physics of Fluids, 25, 1137, (1982)
[23] Puckett, E. G.; Almgren, A. S.; Bell, J. B.; Marcus, D. L.; Rider, W. G., A higher-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys., 130, 269, (1997) · Zbl 0872.76065
[24] Sandberg, W.; Ramamurti, R.; Löhner, R., Simulation of Torpedo Launch Using a 3-D Incompressible Finite Element Solver and Adaptive Remeshing, (1995)
[25] Ramamurti, R.; Löhner, R.; Sandberg, W., Evaluation of a Three-Dimensonal Finite Element Incompressible Flow Solver, (1994)
[26] Skamarock, W. C.; Klemp, J. B., Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow, Mon. Weather Rev., 121, 788, (1993)
[27] Steinthorsson, E.; Modiano, D.; Crutchfield, W. Y.; Bell, J. B.; Colella, P., An adaptive semi-implicit scheme for simulations of unsteady viscous compressible flow, 12th AIAA Computational Fluid Dynamics Conference, (1995)
[28] Stevens, D. E., An Adaptive Multilevel Method for Boundary Layer Meteorology, (1994)
[29] Stevens, D. E.; Bretherton, C. S., A forward-in-time advection scheme and adaptive multilevel flow solver for nearly incompressible atmospheric flow, J. Comput. Phys., 129, 284, (1996) · Zbl 0869.76059
[30] Wesseling, P., An Introduction to Multigrid Methods, (1992) · Zbl 0760.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.