×

zbMATH — the first resource for mathematics

A simple finite difference scheme for multidimensional magnetohydrodynamical equations. (English) Zbl 0932.76048
Summary: We propose an approximate MHD Riemann solver, an approach to maintain the divergence-free condition of magnetic field, and a finite difference scheme for multidimensional magnetohydrodynamical (MHD) equations. The approximate MHD Riemann solver is based on characteristic formulations. Both the conservation laws for mass, momentum, energy, and magnetic field, and the divergence-free condition of the magnetic field are exactly satisfied in the proposed scheme. The scheme does not involve any Poisson solver and is second-order accurate in both space and time. The correctness and robustness of the scheme are shown through numerical examples. The approach proposed in this paper to maintain the divergence-free condition may be applied to other dimensionally split and unsplit Godunov schemes for MHD flows. \(\copyright\) Academic Press.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
ZEUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Godunov, S.K., Difference methods for the numerical calculation of the equations of fluid dynamics, Math. sb., 47, 271, (1959) · Zbl 0171.46204
[2] Landau, L.D.; Lifshits, E., Electrodynamics of continuous media, (1960)
[3] Courant, R.; Friedrichs, K.O., Supersonic flow and shock wave, (1967) · Zbl 0365.76001
[4] Strang, G., On construction and comparison of differential schemes, SIAM J. numer. anal., 5, 506, (1968) · Zbl 0184.38503
[5] Lax, P.D., Hyperbolic systems of conservation laws and mathematical theory of shock waves, (1973) · Zbl 0268.35062
[6] Van Leer, B., Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. comput. phys., 32, 101, (1979) · Zbl 1364.65223
[7] Orszag, S.A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. fluid mech., 90, 129, (1979)
[8] Brackbill, J.U.; Barnes, D.C., The effect of nonzero ▿·B, J. comput. phys., 35, 426, (1980) · Zbl 0429.76079
[9] Roe, P.L., Approximate Riemann solvers, parameters vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[10] Glimm, J.; Isaacson, E.; Marchesin, D.; McBryan, O., Front tracking for hyperbolic system, Adv. in appl. math., 2, 91, (1981) · Zbl 0459.76069
[11] Woodward, P.R.; Colella, P., High resolution difference schemes for compressible gas dynamics, Lecture notes in phys., 141, 434, (1981)
[12] Harten, A., High resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357, (1983) · Zbl 0565.65050
[13] Woodward, P.R.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. comput. phys., 54, 115, (1984) · Zbl 0573.76057
[14] Colella, P.; Woodward, P.R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. comput. phys., 54, 174, (1984) · Zbl 0531.76082
[15] Harten, A.; Osher, S., Uniformly high order accurate non-oscillatory schemes, I, SIAM J. numer. anal., 24, 279, (1987) · Zbl 0627.65102
[16] Harten, A.; Enquist, B.; Osher, S.; Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes, III, J. comput. phys., 71, 231, (1987) · Zbl 0652.65067
[17] Brio, M.; Wu, C.C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. comput. phys., 75, 400, (1988) · Zbl 0637.76125
[18] LeVeque, R., High resolution finite volume methods on arbitrary grids via wave propagation, J. comput. phys., 78, 36, (1988) · Zbl 0649.65050
[19] Evans, C.; Hawley, J.F., Simulation of magnetohydrodynamic flows: A constrained transport method, Astrophys. J., 332, 659, (1988)
[20] Dahlburg, R.B.; Picone, J.M., Evolution of the orszag-Tang vortex system in a compressible medium. I. initial average subsonic flow, Phys. fluid B, 1, 2153, (1989)
[21] Bell, J.B.; Colella, P.; Trangenstein, J.A., Higher order Godunov methods for general systems of hyperbolic conservation laws, J. comput. phys., 82, 362, (1989) · Zbl 0675.65090
[22] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. comput. phys., 87, 171, (1990) · Zbl 0694.65041
[23] Picone, J.M.; Dahlburg, R.B., Evolution of the orszag-Tang vortex system in a compressible medium. II. supersonic flow, Phys. fluid B, 3, 29, (1991)
[24] LeVeque, R.J., Numerical methods for conservation laws, (1992) · Zbl 0847.65053
[25] Zachary, A.L.; Colella, P., A high-order Godunov method for the equations of ideal magnetohydrodynamics, J. comput. phys., 99, 341, (1992) · Zbl 0744.76092
[26] Stone, J.M.; Norman, M.L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. the magnetohydrodynamics algorithms and tests, Astrophys. J. supl., 80, 791, (1992)
[27] Schulz-Rinne, C.W.; Collins, J.P.; Glaz, H.M., Numerical solution of the Riemann problem for two-dimensional gas dynamics, SIAM J. sci. comput., 14, 1394, (1993) · Zbl 0785.76050
[28] Saltzman, J., An unsplit 3D upwind method for hyperbolic conservation laws, J. comput. phys., 115, 153, (1994) · Zbl 0813.65111
[29] Zachary, A.L.; Malagoli, A.; Colella, P., A higher-order Godunov method for multidimensional ideal magnetohydrodynamics, SIAM J. sci. comput., 15, 263, (1994) · Zbl 0797.76063
[30] Dai, W.; Woodward, P.R., An approximate Riemann solver for ideal magnetohydrodynamics, J. comput. phys., 111, 354, (1994) · Zbl 0797.76052
[31] Dai, W.; Woodward, P.R., Extension of the piecewise parabolic method (PPM) to multidimensional ideal magnetohydrodynamics, J. comput. phys., 115, 485, (1994) · Zbl 0813.76058
[32] Powell, K.G., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), (1994)
[33] Powell, K.G.; Roe, P.L.; Myong, R.S.; Gombosi, T.; De Zeeuw, D., An upwind scheme for magnetohydrodynamics, (1995) · Zbl 0900.76344
[34] Ryu, D.; Jones, T.W., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow, Astrophys. J., 442, 228, (1995)
[35] Ryu, D.; Jones, T.W.; Frank, A., Numerical magnetohydrodynamics in astrophysics: algorithm and tests for multidimensional flow, Astrophys. J., 452, 785, (1995)
[36] Croisille, J.-P.; Khanfir, R.; Chanteur, G., Numerical simulation of the MHD equations by a kinetic-type method, J. sci. comput., 10, 81, (1995) · Zbl 0839.76062
[37] Dai, W.; Woodward, P.R., A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws, J. of comput. phys., 121, 51, (1995) · Zbl 0838.65088
[38] LeVeque, R.J.; Shyue, K.-M., Two-dimensional front tracking based on high resolution wave propagation methods, J. comput. phys., 123, 354, (1996) · Zbl 0849.65063
[39] D. Balsara, Total variation diminishing scheme for magnetohydrodynamics, J. Comput. Phys.
[40] Dai, W.; Woodward, P.R., A second-order unsplit Godunov scheme for two- and three-dimensional Euler equations, J. comput. phys., 134, 261, (1997) · Zbl 0888.76050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.