zbMATH — the first resource for mathematics

Analysis of a dengue disease transmission model. (English) Zbl 0930.92020
Summary: A model for the transmission of dengue fever in a constant human population and variable vector population is discussed. A complete global analysis is given, which uses the results of the theory of competitive systems and stability of periodic orbits, to establish the global stability of the endemic equilibrium. The control measures of the vector population are discussed in terms of the threshold condition, which governs the existence and stability of the endemic equilibrium.

92D30 Epidemiology
37N25 Dynamical systems in biology
34D23 Global stability of solutions to ordinary differential equations
37C75 Stability theory for smooth dynamical systems
Full Text: DOI
[1] D.J. Gubler, Dengue, in: T.P. Monath (Ed.), The Arbovirus: Epidemiology and Ecology, vol. 2, CRC, Boca Raton, 1986, p. 213
[2] Jousset, F.X., Geographic A. aegypti strains and dengue-2 virus: susceptibility, ability to transmit to vertebrate and transovarial transmission, Ann. virol, 132E, 357, (1981)
[3] Rosen, L.; Shroyer, D.A.; Tesh, R.B.; Freirer, J.E.; Lien, J.Ch., Transovarial transmission of dengue viruses by mosquitoes: A. albopictus and A. aegypti, Am. J. trop. med. hyg., 32, 5, 1108, (1983)
[4] World Health Organization, Dengue haemorrhagic fever: Diagnosis treatment and control, Geneva, 1986
[5] J.F. Méndez Galvan, R.M. Castellanos, Manual para la vigilancia epidemiológica del dengue, Secretarı́a de Salud, DF, México, 1994
[6] N.T.J. Bailey, The Mathematical Theory of Infectious Diseases, Griffin, London, 1975 · Zbl 0334.92024
[7] K. Dietz, Transmission and control of arbovirus diseases in: D. Ludwig et al. (Eds.), Epidemiology, Proceedings of the Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974, p. 104 · Zbl 0322.92023
[8] Li, Y.; Muldowney, J.S., Global stability for the SEIR model in epidemiology, Math. biosci., 125, 155, (1995) · Zbl 0821.92022
[9] C. Castillo-Chávez, H.R. Thieme, Asymptotically autonomous epidemic models, in: O. Arino et al. (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1, Theory of Epidemics, Wuerz, Winnipeg, 1995
[10] Diekmann, O.; Heesterbeek, J.A.P.; Metz, J.A.J., On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous population, J. math biol., 28, 365, (1990) · Zbl 0726.92018
[11] Velasco-Hernández, J.X., A model for chagas disease involving transmission by vectors and blood transfusion, Theoret. population biol., 46, 1, 1, (1994) · Zbl 0804.92024
[12] J.K. Hale, Ordinary Differential Equations, Wiley, New York, 1969 · Zbl 0186.40901
[13] V. Capasso, M. Doyle, Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics 97, Springer, Berlin, 1993 · Zbl 0798.92024
[14] Smith, H.L., Systems of ordinary differential equations which generate an order preserving flow, SIAM rev., 30, 87, (1988) · Zbl 0674.34012
[15] Hirsch, M.W., Systems of differential equations which are competitive or cooperative, IV: structural stabilities in three dimensional systems, SIAM J. math. anal., 21, 1225, (1990) · Zbl 0734.34042
[16] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlin, 1990 · Zbl 0685.34002
[17] Butler, G.; Freedman, H.I.; Waltman, P., Uniformly persistent systems, Proc. am. math. soc., 96, 425, (1986) · Zbl 0603.34043
[18] Muldowney, J.S., Compound matrices and ordinary differential equations, Rocky mountain J. math., 20, 857, (1990) · Zbl 0725.34049
[19] L. Esteva, Dinámica de la Enfermedad del Dengue, PhD thesis: Centro de Investigación y de Estudios Avanzados del Instituto Poltécnico Nacional, DF, México, 1997
[20] J.V. Uspensky, Theory of Equations, McGraw Hill, New York, 1948
[21] Schisessman, D.J.; Calheiros, B.L., A review of the status of yellow-fever and A. aegypti erradication programs in the americas, Mosq. news, 34, 1, (1974)
[22] Mount, G.A.; Lofgren, C.S.; Pierce, N.W.; Husman, C.N., Ultra low volume nonthermal aerosols of malathion and naled for adult mosquito control, Mosq. news, 28, 99, (1968)
[23] Focks, D.A.; Kloter, K.O.; Carmichael, G.T., The impact of sequential ultra low volume ground aerosol applications of malathion on the population dynamics of A. aegypti, Am. J. trop. med. hyg., 36, 639, (1987)
[24] Pant, C.P.; Mount, G.A.; Jatanasen, S.; Mathis, H.L., Ultra low volume ground aerosols of technical malathion for the control of aedes aegypti, Bull. world health organ., 45, 805, (1971)
[25] Newton, E.A.C.; Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, Am. J. trop. med. hyg., 47, 709, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.