zbMATH — the first resource for mathematics

A flux-split algorithm applied to relativistic flows. (English) Zbl 0930.76054
Summary: The equations of relativistic fluid dynamics can be written as a hyperbolic system of conservation laws by choosing an appropriate vector of unknowns. We give an explicit formulation of the full spectral decomposition of the Jacobian matrices associated with the fluxes in each spatial direction, which is the essential ingredient of the techniques we propose in this paper. These techniques are based on the recently derived flux formula of Marquina, a new way to compute the numerical flux at a cell interface which leads to a conservative, upwind numerical scheme. Using the spectral decompositions in a fundamental way, we construct high order versions of the basic first-order scheme described by R. Donat and A. Marquina in [J. Comput. Phys. 125, No. 1, 42-58, Art. No. 0078 (1996; Zbl 0847.76049)] and test their performance in several standard simulations in one dimension. Two-dimensional simulations include a wind tunnel with a flat faced step and a supersonic jet stream, both of them in strongly ultrarelativistic regimes. \(\copyright\) Academic Press.

76M20 Finite difference methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
83-08 Computational methods for problems pertaining to relativity and gravitational theory
Full Text: DOI
[1] Anile, A.M., Relativistic fluids and magneto-fluids, (1989) · Zbl 0701.76003
[2] Balsara, D., J. comput. phys., 114, 284, (1994)
[3] Banyuls, F.; Font, J.A.; Ibañez, J.M.; Martı́, J.M.; Miralles, J.A., Astrophys. J., 476, 221, (1997)
[4] Donat, R.; Marquina, A., J. comput. phys., 125, 42, (1996)
[5] Duncan, G.C.; Hughes, P.A., Astrophys. J., 436, L119, (1994)
[6] Dolezal, A.; Wong, S.S.M., J. comput. phys., 120, 266, (1995)
[7] Emery, A.F., J. comput. phys., 2, 306, (1968)
[8] F. Eulderink, University of Leiden, 1993
[9] Eulderink, F.; Mellema, G., Astron. astrophys., 284, 652, (1994)
[10] R. Fedkiw, B. Merryman, R. Donat, S. Osher, 96-18, 1996
[11] J. A. Font, University of Valencia, 1994
[12] Font, J.A.; M^{a}. Ibáñez, J.; Marquina, A.; M^{a}. Martı́, J., Astron. astrophys., 282, 304, (1994)
[13] Landau, L.D.; Lifshitz, E.M., Fluid mechanics, (1975)
[14] LeVeque, R.J., Numerical methods for conservation laws, (1991)
[15] Marquina, A.; M^{a}. Martı́, J. Ma. Ibáñez, J.; Miralles, J.A.; Donat, R., Astron. astrophys., 258, 566, (1992)
[16] Marquina, A., SIAM J. sci. comput., 15, 892, (1994)
[17] M^{a}. Martı́, J.; Ibáñez, J.M^{a}.; Miralles, J.A., Phys. rev. D, 43, 3794, (1991)
[18] Martı́, J.M^{a}.; Müller, E., J. fluid mech., 258, 317, (1994)
[19] Martı́, J.M^{a}.; Müller, E., J. comput. phys., 123, 1, (1996)
[20] Martı́, J.M^{a}.; Müller, E.; Ibáñez, J.M^{a}., Astron. astrophys., 281, L9, (1994)
[21] Martı́, J.M^{a}.; Müller, E.; Font, J.A.; Ibáñez, J.M^{a}., Astrophys. J., 448, L105, (1995)
[22] Martı́, J.M^{a}.; Müller, E.; Font, J.A.; Ibáñez, J.M^{a}.; Marquina, A., Astrophys. J., 479, 151, (1997)
[23] Norman, M.L.; Winkler, K.-H.A., Astrophysical radiation hydrodynamics, (1986)
[24] Quirk, J., Int. J. numer. methods fluids, 18, 555, (1994)
[25] Richtmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (1967) · Zbl 0155.47502
[26] Schneider, V.; Katscher, V.; Rischke, D.H.; Waldhauser, B.; Marhun, J.A.; Munz, C.-D., J. comput. phys., 105, 92, (1993)
[27] Shu, C.W.; Osher, S.J., J. comput. phys., 83, 32, (1989)
[28] Spencer, R.E.; Newell, S.J., Vistas astronom., 41, 1, (1997)
[29] Clare, R.B.; Strottman, D., Phys. rep., 141, 177, (1986)
[30] D. Strottman, The Nuclear Equation of State, Part B, W. GreinerH. Stöcker, Plenum, New York, 1989
[31] L. Wen, A. Panaitescu, P. Laguna, 1997
[32] Wilson, J.R., Astrophys. J., 173, 431, (1972)
[33] Woodward, P.R.; Colella, P., J. comput. phys., 54, 115, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.