×

zbMATH — the first resource for mathematics

Static and free vibrational analysis of rectangular plates by the differential quadrature element method. (English) Zbl 0930.74080
Summary: The differential quadrature element method proposed by X. Wang and H. Gu [Int. J. Numer. Methods Eng. 40, No. 4, 759-772 (1997; Zbl 0888.73078)] has been extended to analyze rectangular plate problems. The methodology is worked out in detail, and some numerical examples are given.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74K20 Plates
74H45 Vibrations in dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wang, Static analysis of frame structures by the differential quadrature element method, Int. j. jumer. methods eng. 40 pp 759– (1997) · Zbl 0888.73078 · doi:10.1002/(SICI)1097-0207(19970228)40:4<759::AID-NME87>3.0.CO;2-9
[2] A. G. Striz W. L. Chen C. W. Bert High-accuracy plane and plate elements in the quadrature element method 1995
[3] Striz, Free vibration of plates by the high accuracy quadrature element method, J. Sound Vib. 202 pp 689– (1997) · Zbl 1235.74124 · doi:10.1006/jsvi.1996.0846
[4] Gu, On the free vibration analysis of circular plates with stepped thickness over a concentric region by the differential quadrature element method, J. Sound Vib. 202 pp 452– (1997) · doi:10.1006/jsvi.1996.0813
[5] Wang, Differential quadrature in the analysis of structural components, Adv. Mech. 25 (2) pp 232– (1995) · Zbl 0837.73078
[6] Jang, Application of differential quadrature to static analysis of structural components, Int. j. numer. methods eng. 28 pp 561– (1989) · Zbl 0669.73064 · doi:10.1002/nme.1620280306
[7] Wang, A new approach in applying the differential quadrature to static and free vibration analyses of beams and plates, J. Sound Vib. 162 pp 566– (1993) · Zbl 0958.74527 · doi:10.1006/jsvi.1993.1143
[8] Leissa, The free vibration of rectangular plates, J. Sound Vib. 31 pp 257– (1973) · Zbl 0268.73033 · doi:10.1016/S0022-460X(73)80371-2
[9] Xu, The Weighted Residual Method in Solid Mechanics (1987)
[10] Gutierrez, The method of differential quadrature and its application to the approximate solution of ocean engineering problems, Ocean Eng. 21 pp 57– (1994) · doi:10.1016/0029-8018(94)90029-9
[11] Bert, Convergence of the DQ method in the analysis of anisotropic plates, J. Sound Vib. 170 pp 140– (1994) · doi:10.1006/jsvi.1994.1051
[12] Wang, Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates, Comput. Struct. 48 pp 473– (1993) · doi:10.1016/0045-7949(93)90324-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.