×

zbMATH — the first resource for mathematics

A semi-coarsening strategy for unstructured multigrid based on agglomeration. (English) Zbl 0928.76063
We examine multigrid method for solving second-order PDE’s on stretched unstructured triangulations by using the finite volume agglomeration multigrid technique originally developed for solving the Euler equations. First, a directional semi-coarsening strategy based on Poisson’s equation is proposed. The second-order derivatives are approximated on each level by introducing a correction factor adapted to the semi-coarsening strategy. Then, this method is applied to solve the Poisson equation. The method is extended to the two-dimensional Reynolds-averaged Navier-Stokes equations with appropriate boundary treatment for low-Reynolds number turbulent flows.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76G25 General aerodynamics and subsonic flows
76F10 Shear flows and turbulence
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] , and , AIAA Paper 91-1532, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, 1991.
[2] Kettler, Multigrid Methods, Lecture Notes in Mathematics 960 pp 502– (1982)
[3] Wittum, Impact Comput. Sci. Eng. 1 pp 180– (1989) · Zbl 0707.65020
[4] de Zeeuw, J. Comp. Appl. Math. 33 pp 1– (1990) · Zbl 0717.65099
[5] Mulder, J. Comput. Phys. 83 pp 303– (1989) · Zbl 0672.76087
[6] Ruge, Arbeitspapiere der GMD 89 (1984)
[7] Lonsdale, Int. J. Numer. Methods Heat Fluid Flow 3 pp 3– (1993)
[8] Webster, Int. J. Numer. Methods Fluids 18 pp 761– (1994) · Zbl 0806.76046
[9] and ’Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems’, ICASE Report No. 95-34, 1995.
[10] and , ’A unified multigrid solver for the Navier-Stokes equations on mixed element meshes’, ICASE Report No 95-53, 1995.
[11] ’Steady Euler simulations using unstructured meshes’, Von Karman Institute Lecture Series 85-04, in (ed.), Partial Differential Equations of Hyperbolic Type and Applications, World Scientific, Singapore, 1985, pp. 34-105.
[12] Baba, R. A. I. R. O. Numer. Anal. 15 pp 3– (1981)
[13] Carré, Comput. Fluids 26 pp 299– (1997) · Zbl 0884.76049
[14] ’Flux vector splitting for the Euler equations’, Lecture Notes in Physics, Springer, Berlin, 170, 405-512 (1982).
[15] and , ’A multigrid finite element method for solving the two-dimensional Euler equations’, in (ed.), Multigrid Methods, Theory, Applications and Supercomputing, Marcel Dekker Inc., New York and Basel, 1988, pp. 337-363.
[16] Lallemand, Comput. Fluids 21 pp 397– (1992) · Zbl 0753.76136
[17] Koobus, Int. J. Numer. Methods Fluids 18 pp 27– (1994) · Zbl 0794.76068
[18] and , ’Algebraic multigrid (AMG) for sparse matrix equations’, in (ed.), Sparsity and its Applications, Cambridge University Press, Cambridge, 1984, pp. 257-284.
[19] ’Multi-grid methods and application’, Springer Series in Computational Mathematics, Springer, Berlin. Vol. 4, 1985.
[20] ’Résolution de l’équation de Poisson par une méthode multigrille agglomérée sur maillages étirés’, INRIA Research Report (in French), No 2712, 1995.
[21] Launder, Comput. Methods Appl. Mech. Eng. 3 pp 269– (1974) · Zbl 0277.76049
[22] Jones, Int. J. Heat Mass Transfer 15 pp 301– (1972)
[23] Chen, AIAA J. 26 pp 641– (1988)
[24] ’Modèles bas-Reynolds appliqués a une couche limite compressible’, INRIA Research Report (in French), No 2837, 1996.
[25] Wolfshtein, Int. J. Heat Mass Transfer 12 pp 301– (1969)
[26] Larrouturou, J. Comput. Phys. 1 pp 59– (1991) · Zbl 0725.76090
[27] and , ’A critical compilation of compressible turbulent boundary data’, AGARDograph, 1977, No. 223.
[28] and (eds.), ’Computation and comparison of efficient turbulence models for aeronautics’, Proc. ETMA Workshop, to be published by Vieweg.
[29] and , ’Pressure distributions, and boundary layer and wake measurements’, AGARD AR 138, A6-1-A6-77 (1979).
[30] ’Multigrid solution of the steady Euler equations’, Ph.D. Thesis, University of Amsterdam, 1987.
[31] and ’Progress with multigrid schemes for hypersonic flow problems’, ICASE Report No 91-89, 1991.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.