×

zbMATH — the first resource for mathematics

The effect of viscoelastic brain on the dynamic characteristics of the human skull-brain system. (English) Zbl 0928.74062
Summary: We present a solution to the problem of free vibrations of the human head system taking into account the dissipative behaviour of the brain. The mathematical model is based on the three-dimensional theory of viscoelasticity and on the representation of displacement field in terms of the Navier eigenvectors. The frequency equation is solved numerically, and the results for eigenfrequencies and damping coefficients are presented for various geometrical and physical parameters. The results obtained are in excellent agreement with the measured eigenfrequencies, and the predicted damping coefficients are within the order of magnitude of the measured ones. From the proposed analysis we conclude that the role of the viscoelastic neck as well as the viscoelastic properties of skull-brain system have to be simultaneously taken into account in the study of the frequency spectrum of the human head.

MSC:
74L15 Biomechanical solid mechanics
74D05 Linear constitutive equations for materials with memory
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Misra, J. C., Chakravarty S.: A free-vibration analysis for the human cranial system. J. Biomech.15, 635-645 (1982). · doi:10.1016/0021-9290(82)90018-5
[2] Guarino, J. C., Elger, D. F.: Modal analysis of a fluid-filled elastic shell containing an elastic sphere. J. Sound Vibr.156, 461-479 (1992). · Zbl 0968.74512 · doi:10.1016/0022-460X(92)90739-K
[3] Advani, S. H., Owings, R. P.: Structural modelling of human head. J. Eng. Mech. Div., Am. Soc. Civil Engng101, 257-266 (1975).
[4] Charalambopoulos, A., Dassios, G., Fotiadis, D. I., Kostopoulos, V., Massalas, C. V.: On the dynamic characteristics of the human skull. Int. J. Eng. Sci.34, 1339-1348 (1996). · Zbl 0900.73638 · doi:10.1016/0020-7225(96)00047-X
[5] Charalambopoulos, A., Dassios, G., Fotiadis, D. I., Massalas, C. V.: The dynamic characteristics of the human skull-brain system. Math. Comp. Modelling27, 81-101 (1998). · Zbl 1185.37183 · doi:10.1016/S0895-7177(97)00261-6
[6] Charalambopoulos, A., Dassios, G., Fotiadis, D. I., Massalas, C. V.: The dynamic characteristics of the human head-neck system. Int. J. Eng. Sci.35, 753-768 (1997). · Zbl 0903.73060 · doi:10.1016/S0020-7225(96)00121-8
[7] Charalambopoulos, A., Fotiadis, D. I., Massalas, C. V.: The effect of geometry on the dynamic characteristics of the human skull. Int. J. Eng. Sci. in print (1998). · Zbl 0928.74062
[8] Charalambopoulos, A., Fotiadis, D. I., Massalas, C. V.: Frequency spectrum of the bispherical hollow system: the case of the nonuniform thickness human skull. Acta Mech.130, 249-278 (1998). · Zbl 0912.73044 · doi:10.1007/BF01184314
[9] Charalambopoulos, A., Fotiadis D. I., Massalas, C. V.: Free vibrations of the human viscoelastic skull. Int. J. Eng. Sci. in print (1998). · Zbl 0912.73044
[10] H√•kanson B., Brandt, A., Carlsson, P.: Resonance frequencies of the human skull in vivo. J. Acoust. Soc. Am.95, 1474 (1994). · doi:10.1121/1.408535
[11] Hansen, W. W.: A new type of expansion in radiation problem. Phys. Rev.47, 139-143 (1935). · Zbl 0010.43202 · doi:10.1103/PhysRev.47.139
[12] Zhang, S., Jin, J.: Computation of special functions. New York: Wiley-Interscience 1996. · Zbl 0865.33001
[13] McElhaney, J. H., Fogle, J. L., Melvin, J. W., Haynes, R. R., Roberts, V. L., Alem, N. M.: Mechanical properties of cranial bone. J. Biomech.3, 495-511 (1970). · doi:10.1016/0021-9290(70)90059-X
[14] Schuck, L. Z., Advani, S. H.: Rheological response of human brain tissue in shear. Trans. ASME, J. Basic Eng. 905-911 (1972).
[15] Hickling, R., Wenner, M. L.: Mathematical model of a head subjected to an axisymmetric impact. J. Biomech.6, 115-132 (1973). · doi:10.1016/0021-9290(73)90081-X
[16] Landkoff, B., Goldsmith, W., Sackman, J. L.: Impact on a head-neck structure. J. Biomech.9, 141-151 (1976). · doi:10.1016/0021-9290(76)90153-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.