×

zbMATH — the first resource for mathematics

Maximum density effects on natural convection in a vertical annulus filled with a non-Darcy porous medium. (English) Zbl 0926.76109
The authors study numerically natural convection in a porous medium separated by cold walls, under density inversion, within a vertical annulus. In modelling the flow, the authors take into account the non-Darcy effects which include the Forchheimer inertia and Brinkman viscosity. The results obtained compare favourably with other numerical results and with experimental data.
Reviewer: R.K.Gupta (Meerut)

MSC:
76R10 Free convection
76S05 Flows in porous media; filtration; seepage
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Havstad, M. A., Burns, P. J.: Convective heat transfer in vertical cylindrical annuli filled with a porous medium. Int. J. Heat Mass Transfer25, 1755-1766 (1982). · doi:10.1016/0017-9310(82)90155-7
[2] Hickox, C. E., Gartling, D. K.: A numerical study of natural convection in a vertical, annular, porous layer. 21st National Heat Transfer Conf., ASME Paper No. 82-HT-68 (1982).
[3] Prasad, V., Kulacki, F. A.: Natural convection in a vertical porous annulus. Int. J. Heat Mass Transfer27, 207-219 (1984). · Zbl 0533.76089 · doi:10.1016/0017-9310(84)90212-6
[4] Prasad, V., Kulacki, F. A., Keyhani, M.: Natural convection in porous media. J. Fluid Mech.150, 89-119 (1985). · doi:10.1017/S0022112085000040
[5] Marpu, D. R.: Forchheimer and Brinkman extended Darcy flow model on natural convection in a vertical cylindrical porous annulus. Acta Mech.109, 41-48 (1995). · Zbl 0866.76087 · doi:10.1007/BF01176815
[6] Seki, N., Fukusako, S., Nakaoka, M.: Experimental study on natural convection heat transfer with density inversion of water between horizontal concentric cylinders. ASME J. Heat Transfer97, 556-561 (1975). · doi:10.1115/1.3450430
[7] Desai, V. S., Forbes, R. E.: Free convection in water in the vicinity of maximum density. Environ. Geophys. Heat Transfer 93, 41-47 (1971).
[8] Watson, A.: The effect of the inversion temperature on the convection of water in an inclosed rectangular cavity. Q. J. Mech. Appl. Math.25, 423-446 (1972). · Zbl 0243.76060 · doi:10.1093/qjmam/25.4.423
[9] Lin, D. S., Nansteel, M. W.: Natural convection in a vertical annulus containing water near the density maximum. ASME J. Heat Transfer109, 899-905 (1987). · doi:10.1115/1.3248201
[10] Gebhart, B., Mollendorf, J.: A new density relation for pure and saline water. Deep-Sea Res.24, 831-848 (1977). · doi:10.1016/0146-6291(77)90475-1
[11] Forchheimer, P.: Wasserbewegung durch Boden. Forsch. Ver. D. Ing.45, 1782-1788 (1901).
[12] Brinkman, H. C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res.A1, 27-34 (1947). · Zbl 0041.54204 · doi:10.1007/BF02120313
[13] Ergun, S.: Fluid flow through packed columns. Chem. Eng. Progress48, 89-94 (1952).
[14] Schneider, G. E., Zedan, M.: A modified strongly implicit procedure for the numerical solution of field problems. Numer. Heat Transfer4, 1-19 (1981). · doi:10.1080/01495728108961775
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.