zbMATH — the first resource for mathematics

Rankine-Hugoniot-Riemann solver considering source terms and multidimensional effects. (English) Zbl 0926.76079
We propose a new approach to a flux solver, which takes into account source terms, viscous terms, and multidimensional effects. The basic idea is to distribute the source terms, which also contain the viscous terms and multidimensional effects, from the cells to the cell interfaces. Then the fluxes on both sides of a cell interface are determined by the Rankine-Hugoniot conditions and a linearized Riemann solver. The resulting Rankine-Hugoniot-Riemann solver yields much more accurate results than conventional Riemann solvers for steady premixed laminar flames in one- and two-dimensional and in steady two-dimensional channel flows with injection. \(\copyright\) Academic Press.

76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics, general
76V05 Reaction effects in flows
Full Text: DOI
[1] Becker, E., Gasdynamik, (1966)
[2] Bermudez, A.; Vazquez, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. & fluids, 23, 1049, (1994) · Zbl 0816.76052
[3] Chorin, J., Random choice methods with applications to reacting gas flow, J. comput. phys., 25, 253, (1977) · Zbl 0403.65049
[4] Clavin, P., Premixed combustion and gasdynamics, Ann. rev. fluid mech., 26, 321, (1994) · Zbl 0802.76070
[5] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. comput. phys., 87, 171, (1990) · Zbl 0694.65041
[6] D. Durox, F. Baillot, G. Searby, L. Boyer, On the shape of flames under strong acoustic acceleration: A mean flow controlled by the unsteady flow, 1997
[7] Dwyer, H.A., Calculation of low Mach number reacting flow, Aiaa j., 28, 98, (1990)
[8] Fernandez, G.; Tang, K.Z.; Dwyer, H.A., A comparative study of the low Mach number and navier – stokes equations with time-dependent chemical reactions, Twelfth int. conference on numerical methods in fluid dynamics, 490, (1990)
[9] Hahnemann, H.; Ehret, L., Ueber den einfluss starker schallwellen auf eine stationär brennende gasflamme, Z. tech. phys., 24, 228, (1943)
[10] Jenny, P., On the numerical solution of the compressible navier – stokes equations for reacting and non-reacting gas mixtures, (1997)
[11] Jenny, P.; Müller, B.; Thomann, H., Riemann solver for compressible combustion codes, Proceedings of first international symposium on finite volumes for complex applications, 705, (1996)
[12] Jenny, P.; Müller, B.; Thomann, H., Correction of conservative Euler solvers for gas mixtures, J. comput. phys., 132, 91, (1997) · Zbl 0879.76059
[13] Keller, J.J., Thermoacoustic oscillations in combustion chambers of gas turbines, Aiaa j., 33, 2280, (1995) · Zbl 0850.76629
[14] Klingenstein, P., Nonlinear hyperbolic conservation laws with source terms: errors of the shock location, (1997)
[15] Kuo, K.K., Principles of combustion, (1986) · Zbl 1050.80503
[16] Landau, L.D.; Lifschitz, E.M., Hydrodynamik, (1986)
[17] LeVeque, R.J.; Yee, H.C., A study of numerical methods for hyperbolic conservation laws with stiff source terms, J. comput. phys., 86, 187, (1990) · Zbl 0682.76053
[18] R. J. LeVeque, Balancing source terms and flux gradients in high resolution Godunov methods, J. Comput. Phys. · Zbl 0931.76059
[19] R. J. LeVeque, D. Bale, Wave propagation methods for conservation laws with source terms, Proceedings of Seventh International Conference on Hyperbolic Problems, Zürich, Switzerland, 1998 · Zbl 0927.35062
[20] Lindström, D., Accurate numerical solution of hyperbolic PDEs with source terms, (1996) · Zbl 0863.65052
[21] Oran, E.S.; Boris, J.P., Numerical simulation of reactive flow, (1987) · Zbl 0762.76098
[22] Quirk, J.J., A contribution to the great Riemann solver debate, Int. J. numer. methods fluids, 18, 555, (1994) · Zbl 0794.76061
[23] Rehm, R.G.; Baum, H.R., The equations of motion for thermally driven buoyant flows, J. res. natl. bureau standards, 83, 297, (1978) · Zbl 0433.76072
[24] P. L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, Proceedings of Nonlinear Hyperbolic Problems, C. CarassoP. A. RaviartD. Serre, Springer-Verlag, New York/Berlin, 1986, 1270, 41
[25] Scherer, H., Numerische simulation der ausbreitung einer laminaren vormisch-flamme, (1992), Institut für Fluiddynamik ETH Zürich
[26] G. Searby, Acoustic instability of laminar premixed flames, 1996
[27] Sesterhenn, J.; Müller, B.; Thomann, H., A simple characteristic flux evaluation for subsonic flow, 2nd ECCOMAS CFD conf., 57, (1994)
[28] Sesterhenn, J., Zur numerischen berechnung kompressibler strömungen bei kleinen Mach-zahlen, (1995)
[29] P. K. Sweby, TVD schemes for inhomogeneous conservation laws, Nonlinear Hyperbolic Equations-Theory, Computational Methods and Applications, J. BallmannR. Jeltsch, Vieweg, Braunschweig, 1988, 24, 128
[30] Toro, E.F., Defects of conservative methods and adaptive primitive conservative schemes for computing solutions to hyperbolic conservation laws, (1994)
[31] van Leer, B., Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method, J. comput. phys., 32, 101, (1979) · Zbl 1364.65223
[32] M. E. Vazquez, An efficient upwind scheme with finite volumes of the edge-type for the bidimensional shallow water equations, Proceedings of First International Symposium on Finite Volumes for Complex Applications, F. BenkhaldounR. Vilsmeier, Rouen, France, 1996, 605
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.