zbMATH — the first resource for mathematics

Investigating the BPS spectrum of non-critical \(E_n\) strings. (English) Zbl 0925.81282
Summary: We use the effective action of the \(E_n\) non-critical strings to studyits BPS spectrum for \(0\leqslant n\leqslant 8\). We show how to introduce mass parameters, or Wilson lines, into the effective action, and then perform the appropriate asymptotic expansions that yield the BPS spectrum. The result is the \(E_n\) character expansion of the spectrum, and is equivalent to performing the mirror map on a Calabi-Yau with up to nine Kähler moduli. This enables a much more detailed examination of the \(E_n\) structure of the theory, and provides extensive checks on the effective action description of the non-critical string. We extract some universal (\(E_n\)-independent) information concerning the degeneracies of BPS excitations.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32G81 Applications of deformations of analytic structures to the sciences
Full Text: DOI
[1] Duff, M.; Lu, H.; Pope, C. N.: Phys. lett. B. 378, 101 (1996)
[2] Witten, E.: Nucl. phys. B. 471, 195 (1996)
[3] Ganor, O.: Nucl. phys. B. 488, 223 (1997)
[4] A. Klemm, P. Mayr and C. Vafa, BPS states of exceptional non-critical strings, CERN-TH-96-184, hep-th/9607139. · Zbl 0976.81503
[5] W. Lerche, P. Mayr and N.P. Warner, Non-Critical Strings, Del Pezzo Singularities and Seiberg-Witten Curves, CERN-TH/96-326, USC-96/026, hep-th/9612085. · Zbl 0934.81036
[6] Minahan, J. A.; Nemeschansky, D.: Nucl. phys. B. 468, 72 (1996)
[7] Morrison, D. R.; Seiberg, N.: Nucl. phys. B. 483, 229 (1997)
[8] Klemm, A.; Lerche, W.; Mayr, P.; Vafa, C.; Warner, N. P.: Nucl. phys. B. 477, 746 (1996)
[9] Ganor, O.; Morrison, D.; Seiberg, N.: Nucl. phys. B. 487, 93 (1997)
[10] Seiberg, N.; Witten, E.: Nucl. phys. B. 431, 484 (1994)
[11] Itzykson, C.: Int. J. Mod. phys. A. 8, 1994 (1994)
[12] Kontsevich, M.; Manin, Yu.: Comm. math. Phys.. 164, 525 (1994)
[13] D.R. Morrison, private communication.
[14] W. Lerche, Introduction to Seiberg-Witten Theory and its Stringy Origin, hep-th/9611190.
[15] A. Brandhuber and S. Stieberger, Self-dual Strings and Stability of BPS States in N = 2 SU(2) Gauge Theories, hep-th/9610053. · Zbl 0925.81238
[16] J. Rabin, Geodesics and BPS States in N = 2 Supersymmetric QCD, hep-th/9703145.
[17] Schulze, J.; Warner, N. P.: Nucl. phys. B. 498, 101 (1997)
[18] C. Vafa, private communication.
[19] P. Mayr, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.