×

zbMATH — the first resource for mathematics

Branes intersecting at angles. (English) Zbl 0925.81211
Summary: We show that configurations of multiple D-branes related by SU\((N)\) rotations will preserve unbroken supersymmetry. This includes cases in which two D-branes are related by a rotation of arbitrarily small angle, and we discuss some of the physics of this. In particular, we discuss a way of obtaining 4D chiral fermions on the intersection of D-branes. We also rephrase the condition for unbroken supersymmetry as the condition that a ‘generalized holonomy group’ associated with the brane configuration and manifold is reduced, and relate this condition (in type IIA string theory) to a condition in eleven dimensions.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Polchinski, J., Dirichlet-branes and Ramond-Ramond charges, Phys. rev. lett., 75, 4724, (1995), hep-th/9510017 · Zbl 1020.81797
[2] J. Polchinski, S. Chaudhuri, and C.V. Johnson, Notes on D-Branes, NSF-ITP-96-03, hep-th/9602052.
[3] Bershadsky, M.; Sadov, V.; Vafa, C., D-strings on D-manifolds, Nucl. phys. B, 463, 398, (1996), hep-th/9510225 · Zbl 1004.81535
[4] Sen, A., U-duality and intersecting D-branes, Phys. rev. D, 53, 2874, (1996), hep-th/9511026
[5] J.P. Gauntlett, D.A. Kastor and J. Traschen, Overlapping Branes in M-Theory, CALT-68-2055, hep-th/9604179, Nucl. Phys. B, to be published;; N. Khvienga, H. Lu and C.N. Pope, Intersecting M-branes and Bound States, CTP-TAMU-19-196, hep-th/9605077.
[6] M. Douglas, Branes Within Branes, RU-95-92, hep-th/9512077.
[7] M. Berkooz and R.G. Leigh, A D = 4 N = 1 Orbifold of Type I Strings, RU-96-28, hep-th/9605049. · Zbl 0925.81227
[8] E.G. Gimon and J. Polchinski, Consistency Conditions for Orientifolds and D-Manifolds, hep-th/9601038; E.G. Gimon and C.V. Johnson, K3 Orientifolds, NSF-ITP-96-16, hep-th/9604129, Nucl. Phys. B, to be published; A. Dabholkar and J. Park, Strings on Orientifolds, CALT-68-2051, hep-th/9604178
[9] Becker, K.; Becker, M.; Strominger, A., Fivebranes, membranes and non-perturbative string theory, Nucl. phys. B, 456, 130, (1995), hep-th/9507158 · Zbl 0925.81161
[10] Bershadsky, M.; Sadov, V.; Vafa, C., D-branes and topological field theories, Nucl. phys. B, 463, 420, (1996), hep-th/9511222 · Zbl 1004.81560
[11] H. Ooguri, Y. Oz and Z. Yin, D-Branes on Calabi-Yau Spaces and Their Mirrors, hep-th/9606112. · Zbl 0925.14008
[12] M. Green, J.A. Harvey and G. Moore, I-Brane Inflow and Anomalous Couplings on D-Branes, hep-th/9605033. · Zbl 0867.53063
[13] Blum, J.; Harvey, J.A.; Izquierdo, J.M.; Townsend, P.K., Axionic defect anomalies and their cancellation, Nucl. phys. B, Nucl. phys. B, 414, 93, (1994), hep-th/9307050 · Zbl 1007.81525
[14] Leigh, R.G., Dirac-Born-Infeld action from Dirichlet σ-model, Mod. phys. lett. A, 4, 2767, (1989)
[15] V. Balasubramanian and R.G. Leigh, More Branes at Angles, to appear.
[16] Witten, E.; Townsend, P.K., The eleven-dimensional supermembrane revisited, Nucl. phys. B, Phys. lett. B, 350, 184, (1995), hep-th/9501068
[17] Schwarz, J.H.; Sen, A.; Duff, M.J.; Khuri, R.; Hull, C.; Townsend, P.; Strominger, A., Massless black holes and conifolds in string theory, Phys. lett. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 451, 96, (1995), hep-th/9504090
[18] Green, M.B.; Hull, C.; Townsend, P.K., D-brane Wess-Zumino actions, T-duality and the cosmological constant, Phys. lett. B, 382, 65, (1996), hep-th/9604119
[19] Townsend, P.K., Phys. lett., B350, 184, (1995), hep-th/9501068
[20] Duff, M.J.; Nilsson, B.E.W.; Pope, C.N., Phys. rep., 130, 1, (1986), and references therein
[21] Strominger, A., Superstrings with torsion, Nucl. phys. B, 274, 253, (1986)
[22] Duff, M.J.; Stelle, K., Phys. lett. B, 253, 113, (1991)
[23] de Wit, B.; Nicolai, H.; Nicolai, H., Nucl. phys. B, Phys. lett. B, 187, 316, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.