×

zbMATH — the first resource for mathematics

Small \(E_{8}\) instantons and tensionless non-critical strings. (English) Zbl 0925.81170
Summary: \(T\)-duality is used to extract information on an instanton of zero size in the \(E_{8}\times E_{8}\) heterotic string. We discuss the possibility of the appearance of a tensionless anti-self-dual non-critical string through an implementation of the mechanism suggested by Strominger of two coincident 5-branes. It is argued that when an instanton shrinks to zero size a tensionless non-critical string appears at the core of the instanton. It is further conjectured that the appearance of tensionless strings in the spectrum leads to new phase transitions in six dimensions in much the same way as massless particles do in four dimensions.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Witten, E., Small instantons in string theory, preprint IASSNS-HEP-95-87 · Zbl 1126.81327
[2] Witten, E., Lectures on string duality, (Autumn 1995), Princeton
[3] Duff, M.J.; Ferrara, S.; Khuri, R.R.; Rahmfeld, J., Supersymmetry and dual string solitons, Phys. lett. B, 365, 479, (1995)
[4] Witten, E., Some comments on string dynamics, Proc. Strings ’95, to appear · Zbl 1003.81535
[5] Strominger, A., Open p-branes · Zbl 0903.53053
[6] Witten, E., Five-branes and M-theory on an orbifold, IASSNS-HEP-96-01 · Zbl 1004.81534
[7] Strominger, A., Heterotic solitons, Nucl. phys. B, 343, 167, (1990)
[8] Callan, C.G.; Harvey, J.A.; Strominger, A., World sheet approach to heterotic instantons and solitons, Nucl. phys. B, 359, 611, (1991)
[9] Callan, C.G.; Harvey, J.A.; Strominger, A., Worldbrane actions for string solitons, Nucl. phys. B, 367, 60, (1991)
[10] Callan, C.G.; Harvey, J.A.; Strominger, A., Supersymmetric string solitons
[11] Ginsparg, P., On toroidal compactification of heterotic superstrings, Phys. rev. D, 35, 648, (1987)
[12] Polchinski, J.; Witten, E., Evidence for heterotic - type I string duality, IAS/ITP preprint · Zbl 1004.81526
[13] Hořava, P.; Witten, E., Heterotic and type I string dynamics from eleven dimensions, IASSNS-HEP-95-86
[14] Cadavid, A.C.; Ceresole, A.; D’Auria, R.; Ferrara, S., II-dimensional supergravity compactified on Calabi-Yau threefolds
[15] Antoniadis, I.; Ferrara, S.; Taylor, T.R., N = 2 heterotic superstring and its dual theory in five dimensions · Zbl 0973.14505
[16] Seiberg, N.; Witten, E.; Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. phys. B, Nucl. phys. B, 430, 485, (1994) · Zbl 0996.81511
[17] Becker, K.; Becker, M., Boundaries in M-theory · Zbl 1009.81532
[18] Witten, E., Bound states of strings and p-branes, IASSNS-HEP-95-83 · Zbl 1003.81527
[19] Witten, E., Strong coupling expansion of Calabi-Yau compactification · Zbl 1003.81536
[20] Polchinski, J.; Chaudhuri, S.; Johnson, C.V., Notes on D-branes
[21] Polchinski, J., Dirichlet-branes and Ramond-Ramond charges, ITP preprint · Zbl 1020.81797
[22] Duff, M.J.; Minasian, R.; Witten, E., Evidence for heterotic / heterotic duality · Zbl 1002.81524
[23] K.R. Dienes and R.C. Myers. The spectra of tensionless strings, IASSNS-HEP-96/22, to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.