zbMATH — the first resource for mathematics

Lattice Boltzmann computational fluid dynamics in three dimensions. (English) Zbl 0925.76516
Summary: The recent development of the lattice gas method and its extension to the lattice Boltzmann method have provided new computational schemes for fluid dynamics. Both methods are fully paralleled and can easily model many different physical problems, including flows with complicated boundary conditions. In this paper, basic principles of a lattice Boltzmann computational method are described and applied to several three-dimensional benchmark problems. In most previous lattice gas and lattice Boltzmann methods, a face-centered-hypercubic lattice in four-dimensional space was used to obtain an isotropic stress tensor. To conserve computer memory, we develop a model which requires 14 moving directions instead of the usual 24 directions. Lattice Boltzmann models, describing two-phase fluid flows and magnetohydrodynamics, can be developed based on this simpler 14-directional lattice. Comparisons between three-dimensional spectral code results and results using our method are given for simple periodic geometries. An important property of the lattice Boltzmann method is that simulations for flow in simple and complex geometries have the same speed and efficiency, while all other methods, including the spectral method, are unable to model complicated geometries efficiently.

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
82B40 Kinetic theory of gases in equilibrium statistical mechanics
Full Text: DOI
[1] U. Frisch, B. Hasslacher, and Y. Pomeau,Phys. Rev. Lett. 56:1505 (1986).
[2] G. McNamara and G. Zanetti,Phys. Rev. Lett. 61:2332 (1988).
[3] F. Higuera, S. Succi, and R. Benzi,Europhys. Lett. 9:345 (1989).
[4] D. H. Rothman and J. M. Keller,J. Stat. Phys. 52:1119 (1988). · Zbl 1084.82504
[5] J. A. Somers and P. C. Rem,Physica D 47:39 (1991).
[6] S. Chen, G. D. Doolen, K. Eggert, D. Grunau, and E. Y. Loh,Phys. Rev. A 43:245 (1991).
[7] D. H. Rothman,Geophysics 53(4): 509 (1988).
[8] S. Chen, K. Diemer, G. D. Doolen, K. Eggert, C. Fu, and B. Travis,Physica D 47:72 (1991).
[9] H. Chen and W. H. Matthaeus,Phys. Rev. Lett. 58:1845 (1987).
[10] S. Chen, H. Chen, D. Martinez, and W. H. Matthaeus,Phys. Rev. Lett. 67:3776 (1991).
[11] H. Chen, S. Chen, and W. H. Matthaeus,Phys. Rev. A 45:R5339 (1992).
[12] S. Succi, R. Benzi, and F. Higuera,Physica D 47:219 (1991).
[13] U. Frisch, D. d’Humi√©res, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649-707 (1987).
[14] S. Wolfram,J. Stat. Phys. 45:19-74 (1986). · Zbl 0629.76002
[15] E. Y. Loh, private communication.
[16] S. Chen, G. D. Doolen, D. Grunau, S. Gutman, and S. Lustig, Modeling non-Newtonian fluids with a lattice Boltzmann equation method, preprint (1991).
[17] S. A. Orszag,Lecture Notes in Computer Science, Vol. 11, G. Goos, Karlsruhe, and J. Hartmanis, eds. (Springer-Verlag, 1974).
[18] R. H. Morf, S. A. Orszag, and U. Frisch,Phys. Rev. Lett. 44:572 (1980).
[19] M. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. Morf, and U. Frisch,J. Fluid Mech. 130:411 (1983). · Zbl 0517.76033
[20] H. Chen, J. R. Herring, R. M. Kerr, and R. H. Kraichnan,Phys. Fluids 1(11):1844 (1989). · Zbl 0684.76050
[21] S. Chen, Z. Wang, G. D. Doolen, and X. Shan, Lattice Boltzmann simulations for three dimensional turbulent flows, in preparation (1991).
[22] A. Vincent and M. Meneguzzi,J. Fluid Mech. 225:1891 (1991). · Zbl 0721.76036
[23] Zhensu She, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.