zbMATH — the first resource for mathematics

Rough set approach to knowledge-based decision support. (English) Zbl 0923.90004
Summary: Rough set theory is a new approach to decision making in the presence of uncertainty and vagueness. Basic concepts of rough set theory will be outlined and its possible application will be briefly discussed. Further research problems will conclude the paper.

91B06 Decision theory
90B50 Management decision making, including multiple objectives
PDF BibTeX Cite
Full Text: DOI
[1] Bazan, J.; Skowron, A.; Synak, P., Discovery of decision rules from experimental data, (), 276-279
[2] Bazan, J.; Skowron, A.; Synak, P., Dynamic reducts as a tool for extracting laws from decision tables, (), 346-355
[3] Bazan, J.; Skowron, A.; Synak, P., Discovery of decision rules from experimental data, (), 526-535
[4] Beaubouef, T.; Petry, F.E., A rough set model for relational databases, (), 100-107
[5] Beaubouef, T.; Petry, F.E., Rough querying of crisp data in relational databases, (), 85-88
[6] Beaubouef, T.; Petry, F.E.; Buckles, B.P., Extension of the relational database and its algebra with rough set techniques, Computational intelligence: an international journal, 11, 2, 233-245, (1995)
[7] Brindle, D., Speaker-independent speech recognition by rough sets analysis, (), 376-383
[8] Czyżewski, A., Speaker-independent recognition of digits experiments with neural networks, fuzzy logic and rough sets, Journal of intelligent automation and soft computing, (1995), to appear
[9] Czyżewski, A.; Kaczmarek, A., Multilayer knowledge based system for speaker-independent recognition of isolated words, (), 387-394 · Zbl 0939.68862
[10] Czyżewski, A.; Kaczmarek, A., Speaker-independent recognition of isolated words using rough sets, (), 397-400
[11] Czyżewski, A.; Kaczmarek, A., Speech recognition systems based on rough sets and neural networks, (), 97-100
[12] Golan, R.; Edwards, D., Temporal rules discovery using datalogic/R+ with stock market data, (), 74-81
[13] Grzymała-Busse, J.W., Knowledge acquisition under uncertainty — A rough set approach, Journal of intelligent and robotic systems, 1, 1, 3-16, (1988)
[14] Grzymala-Busse, J.W., Managing uncertainty in expert systems, (1991), Kluwer Academic Publishers Dordrecht, Boston, London · Zbl 0751.68069
[15] Grzymala-Busse, J.W., LERS — A system for learning from examples based on rough sets, (), 3-18
[16] Grzymała-Busse, D.M.; Grzymała-Busse, J.W., Comparison of machine learning and knowledge acquisition methods of rule induction based on rough sets, (), 282-288 · Zbl 0941.68699
[17] Grzymał-Busse, Stefanowski, J., and Ziarko W., “Rough sets: Facts versus misconceptions”, ICS Research Report 61/95.
[18] Grzymała-Busse; Woolerly, L., Improving prediction of preterm birth using a new classification scheme and rule induction, (), 730-734
[19] Gunn, J.D.; Grzymała-Busse, J.W., Global temperature stability by rule induction: an interdisciplinary bridge, Human ecology, 22, 59-81, (1994)
[20] Hadjimichael, M.; Wasilewska, A., Rough sets-based study of voter preference in 1988 USA presidential electron, (), 137-152
[21] Haines, S., The practical application of rough sets to semantics and simulation, (), 77-80
[22] Haines, S.; Longshaw, T.; Magee, G., The practical application of rough sets to semantics and simulation, (), 392-398
[23] Hu, X.; Cercone, N.; Han, J., An attribute-oriented rough set approach for knowledge discovery in databases, (), 90-99 · Zbl 0817.68074
[24] Jackson, A.G.; Ohmer, M.; Al-Kamhawi, H., Rough sets analysis of chalcopyrite semiconductor band gap data, (), 408-417
[25] Jackson, A.G., LeClair, S.R., Ohmer, M.C., Ziarko. W., and Al-Kamhwi, H., “Rough sets applied to material data”, Acta Metallurgica et Materialia, to appear.
[26] Jelonek, J.; Krawiec, K.; Słowiński, R.; Stefanowski, J.; Szymas, J., Neural networks and rough sets comparison and combination for classification of histological pictures, (), 426-433
[27] Jelonek, J.; Krawiec, K.; Słowiński, R.; Szymas, J., Rough set reduction of features for picture-based reasoning, (), 418-425
[28] Kobayashi, S.; Yokomori, T., Approximately learning regular languages with respect to reversible languages: A rough set based analysis, (), 91-94
[29] Kostek, B., Computer based recognition of musical phrases using the rough set approach, (), 401-404
[30] Kostek, B., Rough classification as a tool for acoustical analysis, (), 81-84
[31] Kostek, B., Statistical versus artificial intelligence based processing of subjective test results, ()
[32] Kostek, B., Rough set and fuzzy set methods applied to acoustical analyses, Journal of intelligent automation and soft computing, (1995), to appear
[33] Krusińska, E.; Slowiński, R.; Stefanowski, J., Discriminant versus rough set approach to vague data analysis, Applied stochastic models and data analysis, 8, 43-56, (1992) · Zbl 0800.62006
[34] Krysiński, J., Rough set approach to the analysis of structure activity relationship of quaternary imidazolium compounds, Arzneimittel forschung/drug research, 40, 2, 795-799, (1990)
[35] Krysiński, J., Grob mengen theorie in der analyse der struktur wirkungs beziehungen von quartaren pyridiniumverbindungen, Pharmazie, 46, 12, 878-881, (1992)
[36] Krysiński, J., Analysis of structure activity relationships of quaternary ammonium compounds, (), 119-136
[37] Krysiński, J., Application of the rough sets theory to the analysis of structure-activity-relationships of antimicrobial pyridinium compounds, Die pharmazie, 50, 593-597, (1995)
[38] Kryszkiewicz, M.; Rybiński, H., Finding reducts in composed information systems, (), 261-273 · Zbl 0819.68120
[39] Lenarcik, A.; Piasta, Z., Rough classifiers, (), 298-316 · Zbl 0819.68129
[40] ()
[41] ()
[42] Lin, T.Y., Topological view of stability in rough-fuzzy controllers, () · Zbl 0947.93512
[43] Lau, S.S.Y., Image segmentation based on the indiscernibility relation, (), 395-403
[44] Mrózek, A., Rough sets and dependency analysis among attributes in computer implementations of Expert’s inference models, International journal of man-machine studies, 30, 457-471, (1989) · Zbl 0668.68094
[45] Mrózek, A., Rough sets in computer implementation of rule-based control of industrial processes, (), 19-31
[46] Moradi, H.; Grzymała-Busse, J.; Roberts, J., Entropy of English text: experiments with humans and machine learning system based on rough sets, (), 87-88
[47] Munakata, T., Rough control: basic ideas and applications, (), 340-343
[48] Nowicki, R.; Słowiński, R.; Stefanowski, J., Rough sets analysis of diagnostic capacity of vibroacoustic symptoms, (), 109-123, 2 · Zbl 0850.76632
[49] Nowicki, R.; Słowiński, R.; Stefanowski, J., Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory, Computers in industry, 20, 141-152, (1992)
[50] Nowicki, R.; Słowiński, R.; Stefanowski, J., Analysis of diagnostic symptoms in vibroacoustic diagnostics by means of the rough set theory, (), 33-48
[51] Pawlak, Z., Rough sets, International journal of computer and information sciences, 11, 341-356, (1982) · Zbl 0501.68053
[52] Pawlak, Z., Rough sets — theoretical aspects of reasoning about data, (1991), Kluwer Academic Publishers Dordrecht, Boston, London · Zbl 0758.68054
[53] Pawlak, Z.; Skowron, A., Rough membership functions, (), 251-271 · Zbl 0794.03045
[54] Pawlak, Z.; Słowinski, R., Rough set approach to multi-attribute decision analysis, invited review, European journal of operational research, 72, 443-459, (1994) · Zbl 0805.90069
[55] Pawlak, Z.; Grzymała-Busse, J.W.; Słowiński, R.; Ziarko, W., Rough sets, Communication of the ACM, 38, 88-95, (1995)
[56] Piasta, Z., A comparative analysis of classifiers’ performance by using a simulation study, (), 65-68
[57] Peterson, G.I., Rough classification of pneumonia patients using a clinical database, (), 412-419
[58] Plonka, L.; Mrózek, A., Rule-based stabilization of the inverted pendulum, Computational intelligence: an international journal, 11, 348-356, (1995)
[59] Ras, Z.; Kudelska, A.; Chilumula, N., Can we simplify international physical performance test profile using rough sets approach?, (), 393-396
[60] Shenoi, S., Rough sets in fuzzy databases, (), 263-264
[61] Skowron, A., Extracting laws from decision tables, Computational intelligence, 11, 2, 371-388, (1995)
[62] Skowron, A., Synthesis of adaptive decision systems from experimental data, (), 220-238
[63] Skowron, A.; Grzymała-Busse, J.W., From rough set theory to evidence theory, (), 193-236
[64] Skowron, A.; Stepaniuk, J., Decision rules based on discernibility matrices and decision, (), 602-609
[65] Skowron, A.; Rauszer, C., The discernibility matrices and functions in information systems, (), 311-362
[66] ()
[67] Słowiński, R., Rough set learning of preferential attitude in multi-criteria decision making, (), 642-651
[68] Słowiński, R.; Stefanowski, J., Roughdas and roughclass’ software implementations of the rough sets approach, (), 445-456
[69] Słowiński, R.; Stefanowski, J., Rough classification with valued closeness relation, (), 482-489
[70] Słowiński, R.; Zopounidis, C., Applications of the rough set approach to evaluation of bankruptcy risk, ()
[71] Słowiński, R.; Zopounidis, C., Rough set sorting of firms according to bankruptcy risk, (), 339-357
[72] Słowiński, K., Rough classification of HSV patients, (), 77-93
[73] Słowiński, K.; Słowiński, R.; Stefanowski, J., Rough sets approach to analysis of data from peritoneal lavage in acute pancreatitis, Medical informatics, 13, 3, 143-159, (1988)
[74] Słowiński, K.; Sharif, E.S., Rough sets approach to analysis of data of diagnostic peritoneal lavage applied for multiple injuries patients, (), 420-425
[75] Słowiński, K.; Stefanowski, J.; Antczak, A.; Kwias, Z., Rough sets approach to the verification of indications for treatment of urinary stones by extracorporeal shock wave lithotripsy (ESWL), (), 93-96
[76] Stefanowski, J.; Vanderpooten, D., A general two-stage approach to inducing rules from examples, (), 317-325 · Zbl 0941.68697
[77] Szladow, A.J.; Ziarko, W., Knowledge-based process control using rough sets, (), 49-60
[78] Szladow, A., Datalogic/R: mining the knowledge in databases, Pc ai 7, 1, 40-41, (1993)
[79] Szladow, A.; Ziarko, W., Rough sets: working with imperfect data, AI expert, 7, 36-41, (1993)
[80] Tanaka, H.; Ishibuchi, H.; Shigenaga, T., Fuzzy inference system based on rough sets and its application to medical diagnostic, (), 111-117
[81] Teghem, J.; Charlet, J.-M., Use of ‘rough sets’ method to draw premonitory factors for earthquakes by emphasizing gas geochemistry: the case of a low seismic activity context in Belgium, (), 165-180, 3
[82] Tsumoto, S.; Tanaka, H., Characterization of structure of decision trees based on rough sets and greedoid theory, (), 450-461
[83] Tsumoto, S.; Tanaka, H., PRIMEROSE: probabilistic rule induction method based on rough set theory, (), 274-281 · Zbl 0925.03114
[84] Tsumoto, S.; Tanaka, H., PRIMEROSE: probabilistic rule induction method based on rough set and resampling methods, Computational intelligence: an international journal, 11, 2, 389-405, (1995)
[85] Tsumoto, S.; Tanaka, H., Induction of expert system rules from databases based pm rough set theory and resampling methods, ()
[86] ()
[87] Wróblewski, J., Finding minimal reducts using genetic algorithm (extended version), (), 186-189
[88] Wu, B.H., An intelligent tutoring system using a rough set approach, (), 409-412
[89] Ziarko, W., Data analysis and case-based expert system development tool ‘rough’, (), 356-361
[90] Ziarko, W., The discovery, analysis and representation of data dependencies in databases, (), 177-195
[91] Ziarko, W., Acquisition of control algorithms from operation data, (), 61-75
[92] Ziarko, W., Analysis of uncertain information in the framework of variable precision rough sets, Foundations of computing and decision sciences, 18, 3/4, 381-396, (1993) · Zbl 0806.68029
[93] ()
[94] Ziarko, W.; Golan, R.; Edwards, D., An application of DATALOGIC/R knowledge discovery tool to identify strong predictive rules in stock market data, (), 89-101
[95] Ziarko, W.; Katzberg, J., Control algorithms acquisition, analysis and reduction: machine learning approach, (), 167-178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.