×

zbMATH — the first resource for mathematics

A three-point combined compact difference scheme. (English) Zbl 0923.65071
The authors present a three-point combined compact difference (CCD) scheme for numerical models. This new scheme has sixth-order, accuracy at adjacent boundaries and satisfies the partial differential equation at the boundary. Mathematical derivation, algorithm developments and numerical experiments are well presented. It is an excellent research work.

MSC:
65N06 Finite difference methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] McCalpin, J. D., Int. J. Numer. Methods Fluids, 18, 361, (1994)
[2] Adam, Y., Math. Appl., 1, 393, (1975)
[3] Hirsh, R. S., J. Comput. Phys., 19, 90, (1975)
[4] H. O. Kreiss, Methods for the Approximate Solution of Time Dependent Problems, Geneva, 1975
[5] Adam, Y., J. Comput. Phys., 24, 10, (1977)
[6] Navon, I. M.; Riphagen, H. A., Mon. Wea. Rev., 107, 1107, (1979)
[7] Goedheer, W. J.; Potters, J. H.M., J. Comput. Phys., 61, 269, (1985)
[8] Chang, H.-R.; Shirer, H. N., Mon. Wea. Rev., 113, 409, (1985)
[9] Fan, C., Adv. in Hydrodynamics, 3, 34, (1988)
[10] Lele, S. K., J. Comput. Phys., 103, 16, (1992)
[11] Tolstykh, A. I., Sov. Math. Dokl., 44, 69, (1992)
[12] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., J. Comput. Phys., 108, 272, (1993)
[13] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., J. Comput. Phys., 111, 220, (1994)
[14] Liu, J.-G., J. Comput. Phys., 124, 368, (1996)
[15] Liu, J.-G., J. Comput. Phys., 126, 122, (1996)
[16] Swartz, B.; Wendroff, B., SIAM J. Numer. Anal., 11, 979, (1974)
[17] Kreiss, H. O.; Oliger, J., Tellus, 3, 99, (1972)
[18] Vichnevetsky, R.; Bowles, J. B., Fourier Analysis of Numerical Approximations of Hyperbolic Equations, (1982) · Zbl 0495.65041
[19] Roberts, K. V.; Weiss, N. O., Math. Comput., 20, 272, (1966)
[20] Fromm, J. E., Phys. Fluids Suppl. II, 3, 12, (1969)
[21] Orszag, S. A., J. Fluid Mech., 49, 75, (1971)
[22] Orszag, S. A., Stud. Appl. Math., 49, 395, (1971)
[23] Stommel, H. M., Trans. Amer. Geophys. Union, 29, 202, (1948)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.