×

zbMATH — the first resource for mathematics

An advancing front point generation technique. (English) Zbl 0920.65071
The authors develop an advancing front point generator technique. The input required consists of a specified mean point distance and an initial triangulation of the surface. Timings show that the scheme is about an order of magnitude faster than volume grid generators. Several examples are included that demonstrate the capability of the method.

MSC:
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nay, An alternative for the finite element method, Variat. Methods Eng. 1 (1972) · Zbl 0312.73087
[2] J. Batina A gridless Euler/Navier-Stokes solution algorithm for complex aircraft configurations 1993
[3] Belytschko, Element free Galerkin methods, Int. j. numer. methods eng. 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[4] C. A. Duarte J. T. Oden H p clouds-A meshless method to solve boundary-value problems 95 05 1995
[5] Oñate, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. j. numer. methods eng. 39 pp 3839– (1996) · Zbl 0884.76068 · doi:10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
[6] Oñate, A stabilized finite point method for analysis of fluid mechanics problems, Comput. Methods Appl. Mech. Eng. 139 pp 315– (1996) · Zbl 0894.76065 · doi:10.1016/S0045-7825(96)01088-2
[7] Liu, Overview and applications of the reproducing kernel particle methods, Archives Comput. Methods Eng. 3 (1) pp 3– (1996) · doi:10.1007/BF02736130
[8] Yerry, Automatic three-dimensional mesh generation by the modified-octree technique, Int. j. numer. methods eng. 20 pp 1965– (1984) · Zbl 0547.65077 · doi:10.1002/nme.1620201103
[9] Löhner, Three-dimensional grid generation by the advancing front method, Int. j. numer. methods fluids 8 pp 1135– (1988) · Zbl 0668.76035 · doi:10.1002/fld.1650081003
[10] Peraire, Unstructured finite element mesh generation and adaptive procedures for CFD, AGARD-CP-464 18 (1990)
[11] George, Fully automatic mesh generation for 3D domains of any shape, Impact Comput. Sci. Eng. 2 (3) pp 187– (1990) · Zbl 0717.65095 · doi:10.1016/0899-8248(90)90012-Y
[12] Shepard, Automatic three-dimensional mesh generation by the finite octree technique, Int. j. numer. methods eng. 32 pp 709– (1991) · Zbl 0755.65116 · doi:10.1002/nme.1620320406
[13] George, Automatic mesh generator with specified boundary, Comput. Methods Appl. Mech. Eng. 92 pp 269– (1991) · Zbl 0756.65133 · doi:10.1016/0045-7825(91)90017-Z
[14] Weatherill, Delaunay triangulation in computational fluid dynamics, Comput. Math. Appl. 24 (5/6) pp 129– (1992) · Zbl 0761.76084 · doi:10.1016/0898-1221(92)90045-J
[15] Löhner, Parallel unstructured grid generation, Comput. Methods Appl. Mech. Eng. 95 pp 343– (1992) · Zbl 0825.76680 · doi:10.1016/0045-7825(92)90192-M
[16] R. Löhner Matching semi-structured and unstructured grids for Navier-Stokes calculation 1993
[17] N. Weatherill O. Hassan M. Marchant D. Marcum Adaptive inviscid flow solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes 1993
[18] S. Pirzadeh Viscous unstructured three dimensional grids by the advancing-layers method 1994
[19] Shostko, Three-dimensional parallel unstructured grid generation, Int. j. numer. methods eng. 38 pp 905– (1995) · Zbl 0822.65097 · doi:10.1002/nme.1620380603
[20] Löhner, Extensions and improvements of the advancing front grid generation technique, Commun. Numer. Methods Eng. 12 pp 683– (1996) · Zbl 0862.65051 · doi:10.1002/(SICI)1099-0887(199610)12:10<683::AID-CNM983>3.0.CO;2-1
[21] Löhner, Automatic unstructured grid generators, Finite Elements in Analysis and Design 25 pp 111– (1997) · Zbl 0917.73073 · doi:10.1016/S0168-874X(96)00038-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.