×

zbMATH — the first resource for mathematics

\((0,2)\) target-space duality, CICYs and reflexive sheaves. (English) Zbl 0920.14017
Summary: It is shown that the recently proposed target-space duality for \((0,2)\) models is not limited to models admitting a Landau-Ginzburg description. By studying some generic examples it is established for the broader class of vector bundles over complete intersections in toric varieties. Instead of sharing a common Landau-Ginzburg locus, a pair of dual models agrees in more general non-geometric phases. The mathematical tools for treating reflexive sheaves are provided as well.

MSC:
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
14M10 Complete intersections
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
Software:
schubert
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Banks, T.; Dixon, L.J.; Friedan, D.; Martinec, E., Phenomenology and conformal field theory, or can string theory predict the weak mixing angle?, Nucl. phys. B, 299, 613, (1988)
[2] Witten, E.; Dine, M.; Seiberg, N.; Wen, X.; Witten, E.; Dine, M.; Seiberg, N.; Wen, X.; Witten, E.; Distler, J., Resurrecting (2, 0) compactifications, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, 188, 431, (1987)
[3] Distler, J.; Greene, B.R., Aspects of (2, 0) string compactifications, Nucl. phys. B, 304, 1, (1988)
[4] Witten, E., Phases of N = 2 theories in two dimensions, Nucl. phys. B, 403, 159, (1993), hep-th/9301042 · Zbl 0910.14020
[5] Distler, J.; Kachru, S.; Distler, J., Notes on (0,2) superconformal field theories, Nucl. phys. B, Trieste HEP cosmology, 413, 213, (1994), hep-th/9502012 · Zbl 1007.81505
[6] Distler, J.; Kachru, S., Duality of (0, 2) string vacua, Nucl. phys. B, 442, 64, (1995), hep-th/9501111 · Zbl 0990.81659
[7] Distler, J.; Kachru, S.; Silverstein, E.; Witten, E., Criteria for conformal invariance of (0, 2) models, Nucl. phys. B, Nucl. phys. B, 444, 161, (1995), hep-th/9503212
[8] Blumenhagen, R.; Wißkirchen, A.; Blumenhagen, R.; Schimmrigk, R.; Wißkirchen, A.; Blumenhagen, R.; Wißkirchen, A., Exploring the moduli space of (0, 2) strings, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 475, 225, (1996), hep-th/9604140 · Zbl 0925.14004
[9] Distler, J.; Greene, B.R.; Morrison, D.R., Resolving singularities in (0, 2) models, Nucl. phys. B, 481, 289, (1996), hep-th/9605222 · Zbl 0925.14011
[10] J. Distler, private communication.
[11] Chiang, T.-M.; Distler, J.; Greene, B.R., Some features of (0, 2) moduli space, Nucl. phys. B, 496, 590, (1997), hep-th/9702030 · Zbl 0951.81061
[12] Berglund, P.; Johnson, C.V.; Kachru, S.; Zaugg, P., Heterotic coset models and (0, 2) string vacua, Nucl. phys. B, 460, 252, (1996), hep-th/9509170 · Zbl 0973.14503
[13] M. Kreuzer and M. Nikbakht-Tehrani, (0, 2) string compactifications, Talk at the International Symposium on the Theory of Elementary Particles, Buckow, August 27-31, hep-th/9611130.
[14] Blumenhagen, R.; Schimmrigk, R.; Wißkirchen, A.; Blumenhagen, R.; Sethi, S.; Blumenhagen, R.; Flohr, M., Aspects of (0, 2) orbifolds and mirror symmetry, Nucl. phys. B, Nucl. phys. B, Phys. lett. B, 404, 41, (1997), hep-th/9702199
[15] Sethi, S.; Vafa, C.; Witten, E.; Brunner, I.; Lynker, M.; Schimmrigk, R.; Mayr, P.; Friedman, R.; Morgan, J.; Witten, E.; Bershadsky, M.; Johansen, A.; Pantev, T.; Sadov, V., Four-dimensional compactification of F-theory, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Commun. math. phys., Nucl. phys. B, 505, 165-224, (1997), hep-th/9701165
[16] Blumenhagen, R., Target space duality for (0, 2) compactifications, Nucl. phys. B, 513, 573, (1998), hep-th/9707198 · Zbl 0939.32017
[17] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R.; Batyrev, V.V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Nucl. phys. B, J. alg. geom., 3, 493, (1994), alg-geom/9310003 · Zbl 0829.14023
[18] Griffiths, P.; Harris, J.; Hartshorne, R.; Okonek, C.; Schneider, M.; Spindler, H., Vector bundles on complex projective spaces, (1980), Birkhäuser Basel
[19] Distler, J.; Greene, B.R.; Kirklin, K.; Miron, P.; Eastwood, M.G.; Hübsch, T.; Hübsch, T., Calabi-Yau manifolds, Commun. math. phys., Commun. math. phys., 132, 383, (1992), World Scientific Singapore
[20] S. Katz and S. A. Strømme, Schubert: a maple package for intersection theory; J. DeLoera, Puntos.
[21] E. Sharpe, Extremal transitions in heterotic string theory, PUPT-1707, hep-th/9705210.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.