×

zbMATH — the first resource for mathematics

An \(h\)-\(p\) adaptive method using clouds. (English) Zbl 0918.73328
Summary: Several computational and mathematical features of the \(h\)-\(p\) cloud method are demonstrated. We show how \(h\), \(p\) an \(h\)-\(p\) adaptivity can be implemented in the \(h\)-\(p\) cloud method without traditional grid concepts typical of finite element methods. The mathematical derivation of an a posteriori error estimate for the \(h\)-\(p\) cloud method is also presented. Several numerical examples illustrate the main ideas of the method.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, Comput. Mech. Advances, Elsevier, Amsterdam (to appear). · Zbl 1008.65076
[2] T. Belytschko, Personal communication, 1995.
[3] Belytschko, T.; Lu, Y.Y.; Gu, L.; Belytschko, T.; Lu, Y.Y.; Gu, L.; Belytschko, T.; Lu, Y.Y.; Gu, L., Crack propagation by element free Galerkin methods, (), 191-205 · Zbl 0796.73077
[4] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077
[5] Boresi, A.P.; Lynn, P.P., Elasticity in engineering mechanics, (1974), Prentice-Hall Englewood Cliffs, NJ
[6] deBoor, C., ()
[7] Demkowicz, L.; Oden, J.T.; Rachowicz, W.; Hardy, O., Toward a universal h-p adaptive finite element strategy, part 1. constrained approximation and data structure, Comput. methods appl. mech. engrg., 77, 79-112, (1989) · Zbl 0723.73074
[8] Duarte, C.A.; de Barcellos, C.S., Solution of axisymmetric problems using the p version of the finite element method, (), In Portuguese
[9] Duarte, C.A.M., A review of some meshless methods to solve partial differential equations, ()
[10] C.A.M. Duarte and J.T. Oden. Hp clouds—an hp meshless method, Numer. Methods Partial Diff. Eqs., to appear. · Zbl 0891.73067
[11] Duarte, C.A.M.; Oden, J.T., hp clouds—a meshless method to solve boundary-value problems, () · Zbl 0956.74062
[12] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. comput., 37, 155, 141-158, (1981) · Zbl 0469.41005
[13] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods fluids, 21, 901-933, (1995) · Zbl 0885.76078
[14] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods engrg., 38, 1655-1679, (1995) · Zbl 0840.73078
[15] MacNeal, R.H.; Harder, R.L., A proposed set of problems to test finite element accuracy, Finite elem. anal. des., 1, 3-20, (1985)
[16] Melenk, J.M., On generalized finite element methods, () · Zbl 0941.65112
[17] Oden, J.T.; Patra, A.; Feng, Y.S., An hp adaptive strategy, (), 23-46
[18] Shepard, D., A two-dimensional function for irregularly spaced data, (), 517-524
[19] Swegle, J.W.; Attaway, S.W.; Heinstein, M.W.; Mello, F.J.; Hicks, D.L., An analysis of the smoothed particle hydrodynamics, Technical report SAND93-2513 UC-705, (1994), Sandia
[20] Szabo, B.; Babuska, I., Finite element analysis, (1991), John Wiley and Sons New York
[21] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (1982), McGraw-Hill London · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.