# zbMATH — the first resource for mathematics

A general view of minimally extended systems for simple bifurcation points. (English) Zbl 0915.65042
The development of the minimally extended systems method [cf. A. Griewank and G. W. Reddien, SIAM J. Numer. Anal. 21, 176-185 (1984; Zbl 0536.65031); V. Janovskij, Computing 43, No. 1, 27-36 (1989; Zbl 0695.65033)] for calculation of simple bifurcation points is suggested. In this method the simple bifurcation point $$(x^{*},\lambda^{*})$$ of the equation $$F(x,\lambda)=0,\quad (x\in \mathbb{R}^{n};\lambda\in \mathbb{R}$$ is bifurcation parameter) becomes as regular point $$z^{*}=(x^{*},\lambda^{*},0)$$ of the extended system $G(x,\lambda,\mu):=[ {F(x,\lambda)+\mu d \atop f(x,\lambda)}]=0$ $$(d\in \mathbb{R}^{n}, f:\mathbb{R}^{n}\times \mathbb{R}\rightarrow \mathbb{R}^{2},$$ the Jacobian $$\partial G(x^{*},\lambda^{*},0)\in \mathbb{R}^{(n+2)\times(n+2)}$$ is nonsingular) and for its calculation superlinearly convergent Newton type methods can be applied.

##### MSC:
 65H17 Numerical solution of nonlinear eigenvalue and eigenvector problems
Full Text:
##### References:
 [1] ; : Numerical continuation methods: An introduction. Springer, Berlin 1990. · Zbl 0717.65030 · doi:10.1007/978-3-642-61257-2 [2] ; : Stable computation of simple bifurcation points and emanating branches. Lecture, held at the Conference ”Computational methods for nonlinear phenomena”, January 1993, Oberwolfach, Germany 1993. [3] ; : Matrix computations. 2nd ed. Johns Hopkins University Press, Baltimore-London 1989. [4] ; (eds.): Automatic differentiation of algorithms: Theory, implementation, and application. SIAM, Philadelphia 1991. [5] Griewank, SIAM J. Numer. Anal. 21 pp 176– (1984) [6] Griewank, J. Computat. Appl. Math. 26 pp 133– (1989) [7] Janovský, Computing 43 pp 27– (1989) · Zbl 0695.65033 [8] Moore, SIAM J. Numer. Anal. 17 pp 567– (1980) [9] Pönisch, Computing 35 pp 277– (1985) [10] Pönisch, Computing 26 pp 107– (1981) [11] : Personal communication to A. Griewank 1995. [12] : Numerical analysis of parametrized nonlinear equations. J. Wiley, New York 1986. · Zbl 0582.65042 [13] Seydel, Numer. Math. 33 pp 339– (1979) [14] Weber, Numer. Funct. Anal. Optim. 3 pp 341– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.