×

zbMATH — the first resource for mathematics

A hierarchical bicriterion approach to integrated process plan selection and job shop scheduling. (English) Zbl 0914.90156
Summary: The job shop scheduling literature deals with problems characterized by a fixed linear process plan for each job: it is assumed that the process planning problem has been solved before scheduling, and no flexibility in the process plan is considered. Our aim here is to propose a solution approach for a joint process plan selection and job shop scheduling problem, taking both operations cost and makespan into account within a multi-objective framework. Due to the complexity of the problem, a two-phase hierarchical method is proposed. In the first phase, a relaxed version of the problem is solved, yielding an approximation of the set of efficient process plans with respect to cost and load balancing objectives. Each process plan is then considered and the corresponding scheduling problem is solved by tabu search; the process plan selection is improved by a two-level hierarchical tabu search algorithm.

MSC:
90B35 Deterministic scheduling theory in operations research
90C27 Combinatorial optimization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1287/mnsc.34.3.391 · Zbl 0637.90051
[2] DOI: 10.1287/opre.39.5.824 · Zbl 0729.91005
[3] DOI: 10.1287/opre.17.6.941 · Zbl 0183.49404
[4] DOI: 10.1007/BF02023072 · Zbl 0775.90205
[5] BOWMAN V. J., Multiple Criteria Decision Making 130 pp 76– (1975)
[6] DOI: 10.1016/0951-5240(92)90010-A
[7] DOI: 10.1007/BF02023073 · Zbl 0775.90227
[8] BRANDIMARTE , P. , UKOVICH , W. , and VILLA , A. , 1992 ,Factory level aggregate scheduling a basis for a hierarchical approach. Proceedings of the 3rd IEEE Conference on C/M, Troy , NY , pp. 413 – 422 .
[9] DOI: 10.1016/0305-0548(92)90060-I · Zbl 0745.90033
[10] DOI: 10.1080/00207548908942666
[11] DOI: 10.1002/1520-6750(199012)37:6<981::AID-NAV3220370617>3.0.CO;2-H · Zbl 0825.90551
[12] DOI: 10.1007/BF02023076 · Zbl 0771.90056
[13] ESCUDERO , L. F. , 1987 , A mathematical formulation of a hierarchical approach for production planning in FMS. In Modern Production Management Systems, A. Kusiak (ed.) ( New York North Holland ), pp. 231 – 245 .
[14] FRENCH S., Sequencing and scheduling an introduction to the mathematics of the job shop (1982) · Zbl 0479.90037
[15] DOI: 10.1016/0305-0483(89)90063-7
[16] GLOVER F., ORSA Journal on Computing 1 pp 190– (1989)
[17] GLOVER F., ORSA Journal on Computing 2 pp 4– (1990)
[18] DOI: 10.1007/BF02078647 · Zbl 0772.90063
[19] HOGEEVEN H., Single-machine bicriteria scheduling (1992)
[20] DOI: 10.1080/00207549108930119
[21] DOI: 10.1007/BF01572636
[22] DOI: 10.1007/BF01471113
[23] DOI: 10.1080/00207549008942806 · Zbl 0697.90036
[24] METTALA E. G., Journal of Design and Manufacturing 3 pp 91– (1993)
[25] DOI: 10.1080/00207549008942754
[26] NARAYANAN , V. , 1992 , Intelligent Process Routeing. In Proceedings of the 3rd IEEE International Conference on CIM, Troy , NY , pp. 270 – 277 .
[27] DOI: 10.1287/mnsc.32.4.464 · Zbl 0603.90070
[28] PARKER R. G., Discrete Optimization (1988) · Zbl 0652.90068
[29] DOI: 10.1016/0377-2217(90)90183-C · Zbl 0707.90042
[30] SELEN W. J., Journal of the Operational Research Society 37 pp 1121– (1986)
[31] DOI: 10.1016/0377-2217(92)90093-O · Zbl 0825.90465
[32] DOI: 10.1016/0377-2217(93)90185-P · Zbl 0779.90046
[33] STEUER R. E., Multiple Criteria Optimization Theory, Compulation, and Application (1985)
[34] VAN DE VELDE S., Machine Scheduling and Lagrangian Relaxation (1991) · Zbl 0728.90046
[35] VAN DE VELDE S., ORSA Journal on Computing 5 pp 192– (1993) · Zbl 0777.90019
[36] DOI: 10.1287/opre.40.1.113 · Zbl 0751.90039
[37] DOI: 10.1016/0377-2217(80)90038-7 · Zbl 0418.90054
[38] WIDMER M., Journal of the Operational Research Society 42 pp 75– (1991)
[39] DOI: 10.1016/0377-2217(89)90383-4 · Zbl 0671.90040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.