×

zbMATH — the first resource for mathematics

Histogram modification via differential equations. (English) Zbl 0913.35141
The authors discuss an evolution equation which reproduces the effect of histogram equalization. A typical solution appears to be given by a linear combination of the original and equalized images.

MSC:
35Q80 Applications of PDE in areas other than physics (MSC2000)
68U10 Computing methodologies for image processing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alvarez, L.; Guichard, F.; Lions, P.L.; Morel, J.M., Axioms and fundamental equations of image processing, Arch. rational mech., 16, 200-257, (1993) · Zbl 0788.68153
[2] Alvarez, Lions L.; Lions, P.L.; Morel, J.M., Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. numer. anal., 29, 845-866, (1992) · Zbl 0766.65117
[3] Alvarez, L.; Mazorra, L., Signal and image restoration by using shock filters and anisotropic diffusion, SIAM J. numer. anal., 31, (1994) · Zbl 0804.65130
[4] BrĂ©zis, H., Operateurs maximaux monotones, Notes de matematice, Vol. 50, (1973) · Zbl 0252.47055
[5] Caselles, V.; Catte, F.; Coll, T.; Dibos, F., A geometric model for active contours, Numerische math., 66, 1-31, (1993) · Zbl 0804.68159
[6] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Int. J. Computer Vision · Zbl 0894.68131
[7] June 1995, Proc. Int. Conf. Comp. Vision ’95
[8] A. Chambolle, P. L. Lions, 1995, Image recovery via total variation minimization and related problems, University of Paris IX-Dauphine, CEREMADE · Zbl 0874.68299
[9] Chen, Y.G.; Giga, Y.; Goto, S., Uniqueness and existence of viscosity solutions of generalized Mean curvature flow equations, J. differential geometry, 33, 749-786, (1991) · Zbl 0696.35087
[10] Crandall, M.G.; Ishii, H.; Lions, P.L., User’s guide to viscosity solutions of second order partial linear differential equations, Bull. amer. math. soc., 27, 1-67, (1992) · Zbl 0755.35015
[11] Evans, L.C.; Spruck, J., Motion of level sets by Mean curvature, I, J. differential geometry, 33, 635-681, (1991) · Zbl 0726.53029
[12] Ekeland, I.; Teman, R., Convex analysis and variational problems, Studies in mathematics and its applications, (1976), North-Holland/Am. Elsevier Amsterdam/New York
[13] Gage, M.; Hamilton, R.S., The heat equation shrinking convex plane curves, J. differential geometry, 23, 69-96, (1986) · Zbl 0621.53001
[14] Geman, D.; Reynolds, G., Constrained restoration and the recovery of discontinuities, IEEE trans. PAMI, 14, 367-383, (1992)
[15] Gerig, G.; Kubler, O.; Kikinis, R.; Jolesz, F.A., Nonlinear anisotropic filtering of MRI data, IEEE trans. medical imaging, 11, 221-232, (1992)
[16] Grayson, M., The heat equation shrinks embedded plane curves to round points, J. differential geometry, 26, 285-314, (1987) · Zbl 0667.53001
[17] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi, Gradient flows and geometric active contour models, Proc. Int. Conf. Comp. Vision ’95, Cambridge, June 1995
[18] Kimia, B.B.; Tannenbaum, A.; Zucker, S.W., Shapes, shocks, and deformations, I, Int. J. computer vision, 15, 189-224, (1995)
[19] Kimmel, R.; Bruckstein, A.M., Tracking level sets by level sets: A method for solving the shape from shading problem, Computer vision image understanding, 62, 47-58, (1995)
[20] P. L. Lions, S. Osher, L. Rudin, Denoising and debluring algorithms with constrained nonlinear PDEs, SIAM J. Numer. Analysis
[21] Malladi, R.; Sethian, J.A., Image processing: flows under MIN/MAX curvature and Mean curvature, Graphical models image process., 58, 127-141, (1996)
[22] Malladi, R.; Sethian, J.A.; Vemuri, B.C., Shape modeling with front propagation: A level set approach, IEEE trans. PAMI, 17, 158-175, (1995)
[23] Osher, S.J.; Sethian, J.A., Fronts propagation with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. comput. phys., 79, 12-49, (1988) · Zbl 0659.65132
[24] Olver, P.; Sapiro, G.; Tannenbaum, A., Geometry center technical report 90, (1995)
[25] Osher, S.; Rudin, L.I., Feature-oriented image enhancement using shock filters, SIAM J. numer. anal., 27, 919-940, (1990) · Zbl 0714.65096
[26] E. J. Pauwels, P. Fiddelaers, L. J. Van Gool, Shape-extraction for curves using geometry-driven diffusion and functional optimization, Proc. Int. Conf. Comp. Vision ’95, Cambridge, June 1995
[27] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE trans. pattern anal. machine intell., 12, 629-639, (1990)
[28] P. Perona, M. Tartagni, Diffusion network for on-chip image contrast normalization, Proc. IEEE-International Conference on Image Proc. 1, Austin, Texas, November 1994
[29] Pratt, W.K., Digital image processing, (1991), Wiley New York · Zbl 0728.68142
[30] Rouy, E.; Tourin, A., A viscosity solutions approach to shape-from-shading, SIAM J. numer. anal., 29, 867-884, (1992) · Zbl 0754.65069
[31] Rudin, L.I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 259-268, (1992) · Zbl 0780.49028
[32] G. Sapiro, Geometric partial differential equations in image processing: Past, present, and future, Proc. Second IEEE-International Conference on Image Processing 3, Washington DC, October 1995
[33] Sapiro, G.; Kimmel, R.; Shaked, D.; Kimia, B.B.; Bruckstein, A.M., Implementing continuous-scale morphology via curve evolution, Pattern recog., 26, 1363-1372, (1993)
[34] Sapiro, G.; Tannenbaum, A., On affine plane curve evolution, J. functional anal., 119, 79-120, (1994) · Zbl 0801.53008
[35] Sapiro, G.; Tannenbaum, A., Affine invariant scale-space, Int. J. computer vision, 11, 25-44, (1993)
[36] G. Sapiro, A. Tannenbaum, Y. L. You, M. Kaveh, Experiments on geometric image enhancement, Proc. First IEEE-International Conference on Image Processing 2, Austin-Texas, November 1994
[37] Whitaker, R.T.; Pizer, S.M., A multi-scale approach to nonuniform diffusion, CVGIP: image understand., 51, 99-110, (1993)
[38] Ziemer, W.P., Weakly differentiable functions, (1989), Springer-Verlag Berlin · Zbl 0177.08006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.