×

GMRES physics-based preconditioner for all Reynolds and Mach numbers: Numerical examples. (English) Zbl 0910.76036

This paper presents several numerical results using a vectorized version of a three-dimensional finite element compressible and nearly incompressible Euler and Navier-Stokes code. The assumptions were set on laminar flows and Newtonian fluids. We show the capabilities of the present code to treat a wide range of problems appearing in laminar fluid dynamics towards the unification from incompressible to compressible and from inviscid to viscous flow codes, including inviscid low subsonic, transonic and supersonic regimes and viscous problems with interaction between boundary layers and shock waves in either attached or separated flows.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76D05 Navier-Stokes equations for incompressible viscous fluids
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] , and , ’Physics based GMRES preconditioner for compressible and incompressible Navier-Stokes equations’, Comput. Methods Appl. Mech. Eng., in press (1997).
[2] ’Parallel finite element computations in aerospace applications’, Ph.D. Thesis, Department of Aerospace Engineering and Mechanics, University of Minnesota, (1994).
[3] Aliabadi, Comput. Mech. 11 pp 300– (1993) · Zbl 0772.76032
[4] Baumann, Comput. Methods Appl. Mech. Eng. 95 pp 49– (1992) · Zbl 0757.76024
[5] Brooks, Comput. Methods Appl. Mech. Eng. 32 pp 199– (1982) · Zbl 0497.76041
[6] Hughes, Comput. Methods Appl. Mech. Eng. 54 pp 341– (1986) · Zbl 0622.76074
[7] Hughes, Comput. Methods Appl. Mech. Eng. 58 pp 305– (1986) · Zbl 0622.76075
[8] Hughes, Comput. Methods Appl. Mech. Eng. 58 pp 329– (1986) · Zbl 0587.76120
[9] , and , ’SUPG finite element computation of compressible flows with the entropy and conservation variables formulations’, Comput. Methods Appl. Mech. Eng., in press. · Zbl 0772.76037
[10] ’A finite element method for CFD’, Ph.D. Thesis, Department of Civil Engineering, Stanford University, (1985).
[11] ’Finite element analysis of the compressible Euler and Navier-Stokes equations’, Ph.D. Thesis, Department of Mechanical Engineering, Stanford University, (1988).
[12] Soulaimani, Comput. Methods Appl. Mech. Eng. 118 pp 319– (1994) · Zbl 0848.76039
[13] and , ’Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations’, AIAA Paper 83-0125, (1983).
[14] Hughes, Comput. Methods Appl. Mech. Eng. 45 pp 217– (1984) · Zbl 0542.76093
[15] Franca, Comput. Methods Appl. Mech. Eng. 74 pp 41– (1989) · Zbl 0699.65077
[16] Hughes, Comput. Methods Appl. Mech. Eng. 65 pp 85– (1987) · Zbl 0635.76067
[17] Hughes, Comput. Methods Appl. Mech. Eng. 73 pp 173– (1989) · Zbl 0697.76100
[18] Saad, SIAM J. Sci. Comput. 14 pp 461– (1993) · Zbl 0780.65022
[19] Saad, SIAM J. Sci. Stat. Comput. 7 pp 856– (1986) · Zbl 0599.65018
[20] Storti, Comput. Methods Appl. Mech. Eng. 34 pp 519– (1992)
[21] Storti, Comput. Methods Appl. Mech. Eng. 124 pp 231– (1995) · Zbl 1067.76592
[22] Choi, J. Comput. Phys. 105 pp 207– (1993) · Zbl 0768.76032
[23] , and , ’Propulsion-related flowfields using the preconditioned Navier-Stokes equations’, AIAA Paper 92-3437, (1992).
[24] Nigro, Commun. Appl. Numer. Methods 11 pp 199– (1995) · Zbl 0818.76044
[25] Nigro, Int. j. numer. methods fluids 19 pp 1– (1994) · Zbl 0810.76039
[26] Storti, Comput. Methods Appl. Mech. Eng. 143 pp 3–
[27] Comput. Methods Appl. Mech. Eng. 317 pp 331– (1997)
[28] and , ’Characteristic time-stepping or local preconditioning of the Euler equations’, AIAA Paper 91-1552-CP, (1991).
[29] Gustafsson, SIAM J. Appl. Math. 35 pp 343– (1978) · Zbl 0389.76050
[30] Oliger, SIAM J. Appl. Math. 35 pp 419– (1978) · Zbl 0397.35067
[31] Rudy, J. Comput. Phys. 36 pp 55– (1980) · Zbl 0425.76045
[32] and , Aerodynamics of Wings and Bodies, General, Toronto, (1965). · Zbl 0161.22502
[33] ’Numerical solution of the Navier-Stokes equations for the supersonic laminar flow over two dimensional compression corner’, NASA TR R-385, (1972).
[34] Hung, AIAA J. 14 pp 475– (1976) · Zbl 0342.76028
[35] Perturbation Methods in Fluid Mechanics, Parabolic, Stanford, CA, (1975).
[36] Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.