zbMATH — the first resource for mathematics

\(p\)-adic numbers and renormalization of eigenfunctions in quantum mechanics. (English) Zbl 0910.46060
Summary: In this paper we show how \(p\)-adic analysis can be used, in some cases, to treat divergent series in quantum mechanics. We shall consider examples in which the usual theory of Schrödinger equation would give rise to an infinite expectation value of the energy operator; on the contrary, by using \(p\)-adic analysis, we are able to get a convergent expansion and obtain a finite rational value for the energy.

46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
81Q99 General mathematical topics and methods in quantum theory
Full Text: DOI
[1] Beltrametti, E.; Cassinelli, G., Found. of phys., 2, 16, (1962)
[2] Volovich, I.V., Class. quantum grav., 4, L83, (1987)
[3] Grossman, B., Phys. lett B, 197, 101, (1987)
[4] Olson, M.; Freund, P.G.O.; Witten, E., Phys. lett. B, 199, 91, (1987)
[5] Frampton, P.H.; Okada, Y., Phys. rev. lett., 60, 484, (1988)
[6] Vladimirov, V.S.; Volovich, I.V., Commun. math. phys., 123, 659, (1989)
[7] Khrennikov, A.Yu., Russian math. survey, 45, 87, (1990)
[8] Khrennikov, A.Yu., J. math. phys., 32, 932, (1991)
[9] K. Mahler (Cambridge Univ. Press, Cambridge, 1973).
[10] Vladimirov, V.S.; Volovich, I.V., Lett. math. phys., 18, 43, (1989)
[11] Volovich, I.V.; Vladimirov, V.S.; Zelenov, E.I., Math. USSR izv., 54, 275, (1990)
[12] Monna, A.F., ()
[13] von Mises, R., Probability, statistic and truth, (1953), Macmillan London
[14] Khrennikov, A.Yu., Sov. math. dokl., 326, 796, (1992)
[15] Smirnov, V.A., Mod. phys. lett. A, 6, 1421, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.