×

zbMATH — the first resource for mathematics

Phases of \(N=2\) theories in two dimensions. (English) Zbl 0910.14020
Summary: By looking at phase transitions which occur as parameters are varied in supersymmetric gauge theories, a natural relation is found between sigma models based on Calabi-Yau hypersurfaces in weighted projective spaces and Landau-Ginzburg models. The construction permits one to recover the known correspondence between these types of models and to greatly extend it to include new classes of manifolds and also to include models with \((0,2)\) world-sheet supersymmetry. The construction also predicts the possibility of certain physical processes involving a change in the topology of space-time.
Reprinted in Mirror Symmetry II, AMS/IP Stud. Adv. Math. 1, 143-211 (1997; see the following review).

MSC:
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Martinec, E., Criticality, catastrophes, and compactifications, () · Zbl 0737.58060
[2] Vafa, C.; Warner, N., Catastrophes and the classification of conformal field theories, Phys. lett., B218, 51, (1989)
[3] Greene, B.; Vafa, C.; Warner, N., Calabi-Yau manifolds and renormalization group flows, Nucl. phys., B324, 371, (1989) · Zbl 0744.53044
[4] Lerche, W.; Vafa, C.; Warner, N., Chiral rings in N = 2 superconformal theory, Nucl. phys., B324, 427, (1989)
[5] Cecotti, S.; Girardello, L.; Pasquinucci, A.; Cecotti, S.; Girardello, L.; Pasquinucci, A., Singularity theory and N = 2 supersymmetry, Nucl. phys., Int. J. mod. phys., A6, 2427, (1991) · Zbl 0741.58052
[6] Cecotti, S., N = 2 Landau-Ginzburg vs. Calabi-Yau σ-model: non-perturbative aspects, Int. J. mod. phys., A6, 1749, (1991) · Zbl 0743.57022
[7] Aspinwall, P.; Greene, B.; Morrison, D., Multiple mirror manifolds and topology change in string theory, Phys. lett. B, (1993), to be published
[8] Hubsch, T.; Hubsch, T.; Gates, J.; Hubsch, T.; Gates, J.; Hubsch, T., Calabi-Yau heterotic strings and supersymmetric sigma models, Phys. lett., Mod. phys. lett., Phys. lett., Nucl. phys., B343, 741, (1990)
[9] Thaddeus, M., Stable pairs, linear systems, and the Verlinde formula, (1992), MSRI preprint
[10] Wess, J.; Bagger, J., Supersymmetry and supergravity, (1992), Princeton Univ. Press Princeton
[11] Gates, S.J.; Grisaru, M.T.; Rocek, M.; Siegel, W., Superspace, or one thousand and one lessons in supersymmetry, (1983), Benjamin-Cummings Menlo Park, CA · Zbl 0986.58001
[12] Freund, P.G.O., Introduction to supersymmetry, (1986), Cambridge Univ. Press Cambridge
[13] West, P., Introduction to supersymmetry and supergravity, (1986), World Scientific Singapore
[14] Misra, S.P., Introduction to supersymmetry and supergravity, (1992), Wiley Eastern Limited New York · Zbl 0752.53045
[15] Gates, J., Superspace formulation of new non-linear sigma models, Nucl. phys., B238, 349, (1984)
[16] Gates, S.J.; Hull, C.M.; Rocek, M., Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. phys., B248, 157, (1984)
[17] Buscher, T.; Lindstrom, U.; Rocek, M., New supersymmetric σ-models with Wess-Zumino term, Phys. lett., B202, 94, (1988)
[18] Hitchin, N.J.; Karlhede, A.; Lindstrom, U.; Rocek, M., Hyper-kahler metrics and supersymmetry, Commun. math. phys., 108, 535, (1987) · Zbl 0612.53043
[19] Rocek, M., Modified Calabi-Yau manifolds with torsion, () · Zbl 0859.53050
[20] Rocek, M.; Verlinde, E., Duality, quotients, and currents, Nucl. phys., B373, 630, (1992)
[21] D’Adda, A.; Davis, A.C.; DiVecchia, P.; Salomonson, P., An effective action for the \(C P\^{}\{n−1\}\) model, Nucl. phys., B222, 45, (1983)
[22] Hubsch, T., Of marginal kinetic terms and anomalies, Mod. phys. lett., A6, 1553, (1991) · Zbl 1020.81902
[23] Coleman, S., More on the massive Schwinger model, Ann. phys. (NY), 101, 239, (1976)
[24] Witten, E., Mirror manifolds and topological field theory, () · Zbl 0834.58013
[25] Vafa, C.; Cecotti, S., Exact results for supersymmetric sigma models, Phys. rev. lett., 68, 903, (1992) · Zbl 0969.81634
[26] Schellekens, A.; Warner, N.; Pilch, K.; Schellekens, A.; Warner, N., Anomalies, characters, and strings, Phys. lett., Nucl. phys., B287, 317, (1987)
[27] Witten, E.; Witten, E., The index of the Dirac operator in loop space, (), 109, 525, (1987)
[28] ()
[29] Witten, E., Topological sigma models, Commun. math. phys., 118, 411, (1988) · Zbl 0674.58047
[30] Eguchi, T.; Yang, S.-K., N = 2 superconformal models as topological field theories, Mod. phys. lett., A4, 1653, (1990)
[31] Vafa, C., Topological Landau-Ginzburg models, Mod. phys. lett., A6, 337, (1991) · Zbl 1020.81886
[32] Bradlow, S.; Bradlow, S.; Daskapoulos, G., Moduli of stable pairs for holomorphic bundles over Riemann surfaces, J. diff. geom., Int. J. math., 2, 477, (1991) · Zbl 0759.32013
[33] O. Garcia-Prada, Dimensional reduction of stable bundles, vortices, and stable pairs, in preparation · Zbl 0799.32022
[34] Guillemin, V.; Sternberg, S., Geometric quantization and multiplicities of group representations, Invent. math., 67, 515, (1982) · Zbl 0503.58018
[35] Mumford, D.; Fogarty, J., Geometric invariant theory, (1982), Springer Berlin · Zbl 0504.14008
[36] Newstead, P., Introduction to moduli problems and orbit spaces, (1978), Tata Institute · Zbl 0411.14003
[37] Duistermaat, J.J.; Heckman, G.J., On the variation in the cohomology in the symplectic form of the reduced phase space, Invent. math., 69, 259, (1982) · Zbl 0503.58015
[38] M. Kreuzer and H. Skarke, On the classification of quasi-homogeneous functions;
[39] Aubin, M., The topology of torus action on symplectic manifolds, (1991), Birkhauser Basel
[40] Cox, D.A., The homogeneous coordinate ring of a toric variety, (1992), preprint Amherst College Mathematics Department
[41] Batyrev, V., Variations of the mixed hodfe structure of affine hypersurfaces in algebraic tori, (1992), preprint
[42] Hubsch, T., Calabi-Yau manifolds: A bestiary for physicists, (1992), World Scientific Singapore · Zbl 0771.53002
[43] Schimmrigk, R., A new construction of a three generation Calabi-Yau manifold, Phys. lett., B193, 175, (1987)
[44] Gepner, D., Exactly solvable string compactification on manifolds of SU(N) holonomy, Phys. lett., B199, 380, (1987)
[45] String theory on Calabi-Yau manifolds: The three generations case PUPT-88/0085 (unpublished)
[46] Kollár, J., The structure of algebraic threefolds: an introduction to Mori’s program, Bull. am. meth. soc., 17, 211, (1987) · Zbl 0649.14022
[47] Hartshorne, R., Algebraic geometry, (1977), Springer-Verlag Berlin · Zbl 0367.14001
[48] Dine, M.; Seiberg, N.; Witten, E.; Wen, X.-G.; Dine, M.; Seiberg, N.; Witten, E.; Wen, X.-G., Non-perturbative effects on the string world sheet I,II, Nucl. phys., Nucl. phys., B289, 319, (1987)
[49] Candelas, P.; Green, P.; Parke, L.; de la Ossa, X., A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nucl. phys., B359, 21, (1991) · Zbl 1098.32506
[50] P. Aspinwall and D.B. Morrison, Topological field theory and rational curves, Oxford preprint, to appear in Commun. Math. Phys. · Zbl 0776.53043
[51] Hull, C.; Witten, E., Supersymmetric sigma models and the heterotic string, Phys. lett., B160, 398, (1985)
[52] Dine, M.; Seiberg, N., (2,0) superspace, Phys. lett., B180, 364, (1986)
[53] Brooks, R.; Gates, J.; Muhammed, F.; Brooks, R.; Gates, J.; Muhammed, F., Extended D = 2 supergravity theories and their lower superspace realizations, Nucl. phys., Class. quant. grav., 5, 785, (1988)
[54] Green, M.B.; Schwarz, J.H.; Witten, E., ()
[55] Distler, J.; Greene, B., Aspects of (2,0) string compactifications, Nucl. phys., B304, 1, (1988)
[56] E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, IASSNS-HEP-93/10
[57] Guillemin, V.; Sternberg, S., Birational equivalence in the symplectic category, Inv. math., 97, 485, (1989) · Zbl 0683.53033
[58] Candelas, P.; Lynker, M.; Schimmrigk, R.; Klemm, A.; Schimmrigk, R., Calabi-Yau manifolds in weighted \(P\)^4, Nucl. phys., Landau-Ginzburg string vacua, B341, 383, (1992), preprint · Zbl 0962.14029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.