×

zbMATH — the first resource for mathematics

Transport coefficients of plasmas and disparate mass binary gases. (English) Zbl 0909.35108
The dynamics of an inhomogeneous disparate mass binary gas or plasma in which the species have different molecular weights is investigated. In particular, the inhomogeneous case is studied at various time scales. Three time scales are considered. The first scale is the Maxwellianization scale of the light species (the scale at which the light species relaxes to a local Maxwellian thermodynamical equilibrium). The second scale is the Maxwellianization scale of the heavy species, whereas the third scale is the relaxation scale of the relative velocity.
An accurate use of Hilbert or Chapman-Enskog methods at various scales is performed. The obtained models are identical with the conventional plasma models except that the electron (or light particle system) is in the form of an energy-transport model instead of a hydrodynamic model.
Reviewer: S.Totaro (Firenze)

MSC:
35Q35 PDEs in connection with fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35Q30 Navier-Stokes equations
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bardos, C., Golse, F. and Levermore, D. 1992.Fluid dynamics limits of kinetic equations; convergence proofs for the Boltzmann equation, 7Paris: Preprint 19, CNRS URA 212, Université. · Zbl 0817.76002
[2] Ben Abdallah N., An energy-transport model for semiconductors derived from the Boltzmann equation · Zbl 1081.82610
[3] Braginskii S. I., Transport processes in a plasma 1 (1965)
[4] Caflisch R. E., The fluid dynamic limit of the nonlinear Boltzmann equation 33 pp pp. 651– (1980)
[5] DOI: 10.1007/978-1-4612-1039-9
[6] Chapman S., The mathematical theory of non-uniform gases (1958)
[7] Chmieleski R. M., Transport properties of a nonequilibrium partially ionized gas, Phys. Fluids 10 pp pp. 364– (1967)
[8] Darrozes J. S., Sur une théorie asymptotique de l’équation de Boltzmann et son application à l’étude des écoulements en régime presque continu (1970)
[9] Decoster A., Interpénétration de plasmas, équations fluides et simulations (1992)
[10] Decoster A., Transport ionique dans les plasmas à deux types d’ions (1993)
[11] Degond P., The asymptotics of collision operators for two species of particles of disparate masses (1995)
[12] DeMasi A., Incompressible Navier-Stokees and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math. 42 pp pp. 1189– (1990) · Zbl 0689.76024
[13] Desvillettes L., A remark concerning the Chapman-Enskog asymptotics (1994) · Zbl 0863.76071
[14] Di Perna R., On the Cauchy problem for the Boltzmann equations: global existence and weak stability, Annals of Math. 130 pp pp. 321– (1990)
[15] Ellis R. S., The first and second fluid approximations of the linearized Boltzmann equation, J. Math. pures et appl. 54 pp pp. 125– (1975)
[16] The projection of the Navier-Stokes equations upon the Euler equations, J. Math. pures et appl. 54 pp pp. 157– (1975)
[17] Goldman E., Equations for gas mixtures, Phys. Fluids 10 pp pp. 1928– (1967)
[18] Equations for gas mixtures II, Phys. Fluids 12 pp pp. 245– (1969)
[19] Grad, H. 1960.Rarefied Gas Dynamics, Edited by: Devienne, F. pp. 10–138. London, England: Pergamon.
[20] Grad H., Asymptotic theory of the Boltzmann Equation, Phys. Fluids 8 pp pp. 147– (1963) · Zbl 0115.45006
[21] Laurmann, J. A., ed. Asymptotic theory of the Boltzmann Equation II. Proceedings of the third international symposium on rarefied gas dynamics. vol 1, pp.pp. 26–59. New-York: Academic Press.
[22] Grad H., Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equation pp pp. 154– (1964)
[23] Johnson E. A., Energy and momentum equations for disparate-mass binary gases, Phys Fluids 16 pp pp. 45– (1973)
[24] Kawashima S., On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Comm. Math. Phys. 70 pp pp. 97– · Zbl 0449.76053
[25] Krall N. A., Principles of plasma physics (1973)
[26] Landau L., Theoretical Physics, t. I, Mechanics (1992)
[27] Larroche O., Kinetic simulation of a plasma collision experiment, Phys Fluids 5 pp pp. 2816– (1993)
[28] Mischler S., Etude asymptotique d’un modèle de Boltzmann pour les collisions de deux espèces de particules de masses très différentes, manuscript
[29] Montgomery D. C., Plasma kinetic theory (1964)
[30] Nishida T., Fluid dynamic limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys. 61 pp pp. 119– (1978) · Zbl 0381.76060
[31] Petit J. P., Une nouvelle formulation des équations du mouvement d’un gaz ionisé dans un régime dominé par les collisions, Journal de Mécanique 14 pp pp. 745– (1975)
[32] Shkarofsky I. P., The particle kinetics of plasmas (1966)
[33] Spitzer L., Transport phenomena in a completely ionized gas, Phy. Rev. 89 pp pp 977– (1953) · Zbl 0050.23505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.