×

zbMATH — the first resource for mathematics

Holomorphic anomalies in topological field theories. (English) Zbl 0908.58074
Summary: We study the stringy genus-one partition function of \(N=2\) SCFTs. It is shown how to compute this using an anomaly in decoupling of BRST trivial states from the partition function. A particular limit of this partition function yields the partition function of topological theory coupled to topological gravity. As an application we compute the number of holomorphic elliptic curves over certain Calabi-Yau manifolds including the quintic threefold. This may be viewed as the first application of mirror symmetry at the string quantum level.
Reviewer: Reviewer (Berlin)

MSC:
58Z05 Applications of global analysis to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
Software:
schubert
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.: Nucl. phys.. 386, 405 (1992)
[2] Cecotti, S.; Vafa, C.: Ising model and N = 2 supersymmetric theories. Preprints harvard HUTP-92/A044 and SISSA-167/92/EP (1992) · Zbl 0787.58008
[3] Cecotti, S.; Vafa, C.: Nucl. phys.. 367, 359 (1991)
[4] D-Auria, R.; Castellani, L.; Ferrara, S.: Class. quant. Grav.. 1, 1767 (1990)
[5] Derendinger, J. -P.; Ferrara, S.; Kounnas, C.; Zwirner, F.: Nucl. phys.. 372, 145 (1992)
[6] Witten, E.: Nucl. phys.. 340, 281 (1990)
[7] Newman, M.: Integral matrices, pure and applied mathematics. 45 (1972) · Zbl 0254.15009
[8] Gross, D.; Taylor, W.: Nucl. phys.. 400, 161 (1993)
[9] R. Dijkgraaf and R. Rudd, in preparation
[10] Gromov, M.: Invent. math.. 82, 307 (1985)
[11] Wolfson, J. G.: J. diff. Geom.. 28, 383 (1988)
[12] Aspinwall, P. S.; Morrison, D. R.: Topological field theory and rational curves. Oxford preprint OUTP-91-32p, DUK-M-91-12 (1991)
[13] Kodaira, K.: Amer. J. Math.. 87, 751 (1964)
[14] Kodaira, K.: Ann. math.. 74, 591 (1961)
[15] Dixon, L.: Talk presented in mirror symmetry conf. At MSRI. (1991)
[16] Candelas, P.; De La Ossa, X. C.; Green, P. S.; Parkes, L.: Nucl. phys.. 359, 21 (1991)
[17] Greene, B. R.; Plesser, M. R.: Nucl. phys.. 338, 15 (1990)
[18] Schmid, W.: Invent. math.. 22, 211 (1973)
[19] Griffiths, P.; Harris, J.: Principles of algebraic geometry. (1978) · Zbl 0408.14001
[20] Klemm, A.; Theisen, S.: Considerations of one-modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler potentials and mirror maps. Preprints KA-THEP-03/92, TUM-TH-143-92 (April 1992)
[21] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, to appear
[22] Eguchi, T.; Ooguri, H.: Nucl. phys.. 282, 308 (1987)
[23] S. Katz, Excess intersection and deformations, in preparation
[24] Katz, S.: S.-t.yau essays on mirror manifolds. Essays on mirror manifolds (1992)
[25] Fulton, W.: Intersection theory. (1984) · Zbl 0541.14005
[26] Grothendieck, A.: Fondements de la géometrie algébrique. Séminaire bourbaki (1962) · Zbl 0239.14001
[27] Schoen, C.: Math. Z.. 197, 177 (1988)
[28] Hartshorne, R.: Algebraic geometry. (1977) · Zbl 0367.14001
[29] S. Katz and S.A. Strømme, ”schubert”: a Maple package for intersection theory, available by anonymous ftp from ftp@math.okstate.edu or linus.mi.uib.no, cd pub/schubert
[30] Sacks, J.; Uhlenbeck, K.: Ann. math.. 113, 1 (1981)
[31] Font, A.: Nucl. phys.. 391, 358 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.