×

zbMATH — the first resource for mathematics

Black hole condensation and the unification of string vacua. (English) Zbl 0908.53041
Summary: It is argued that black hole condensation can occur at conifold singularities in the moduli space of type II Calabi-Yau string vacua. The condensate signals a smooth transition to a new Calabi-Yau space with different Euler characteristic and Hodge numbers. In this manner string theory unifies the moduli spaces of many or possibly all Calabi-Yau vacua. Elementary string states and black holes are smoothly interchanged under the transitions, and therefore cannot be invariantly distinguished. Furthermore, the transitions establish the existence of mirror symmetry for many or possibly all Calabi-Yau manifolds.

MSC:
53Z05 Applications of differential geometry to physics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R., Calabi-Yau moduli space, mirror manifolds and spacetime topology change in string theory, Nucl. phys. B, 416, 414, (1994) · Zbl 0899.32006
[2] Witten, E., Phases of N = 2 theories in two dimensions, Nucl. phys. B, 403, 159, (1993) · Zbl 0910.14020
[3] Clemens, C.H., Double solids, Adv. math., 47, 107, (1983) · Zbl 0509.14045
[4] Friedman, R., Simultaneous resolution of threefold double points, Math. ann., 274, 671, (1986) · Zbl 0576.14013
[5] Hirzebruch, F., (), 757-770, (notes by J. Werner)
[6] Tian, G.; Yau, S.-T., Three dimensional algebraic manifolds with c1 = 0 and X = −6, (), 629-646
[7] Reid, M., The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. ann., 278, 329, (1987) · Zbl 0649.14021
[8] Candelas, P.; Dale, A.M.; Lütken, C.A.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. phys. B, 298, 493, (1988)
[9] Green, P.S.; Hübsch, T.; Green, P.S.; Hübsch, T., Connecting moduli spaces of Calabi-Yau threefolds, Phys. rev. lett., Comm. math. phys., 119, 431, (1988) · Zbl 0684.53077
[10] Candelas, P.; Green, P.S.; Hübsch, T.; Candelas, P.; Green, P.S.; Hübsch, T., Rolling among Calabi-Yau vacua, Phys. rev. lett., Nucl. phys. B, 330, 49, (1990) · Zbl 0985.32502
[11] Candelas, P.; de la Ossa, X.C., Comments on conifolds, Nucl. phys. B, 342, 246, (1990)
[12] Strominger, A., Massless black holes and conifolds in string theory, Nucl. phys. B, 451, 96, (1995) · Zbl 0925.83071
[13] K. Becker, M. Becker, B.R. Greene, D.R. Morrison and A. Strominger, to appear.
[14] Greene, B.R.; Plesser, M.R., Duality in Calabi-Yau moduli space, Nucl. phys. B, 338, 15, (1990)
[15] Lefschetz, S.; Lefschetz, S., L’analysis situs et la Géométrie algébrique, (), 283-439, (1924), Gauthier-Villars Paris, reprinted in: · JFM 50.0663.01
[16] de Wit, B.; Lauwers, P.; Van Proeyen, A., Lagrangians of N = 2 supergravity-matter systems, Nucl. phys. B, 255, 569, (1985)
[17] Strominger, A., Special geometry, Comm. math. phys., 133, 163, (1990) · Zbl 0716.53068
[18] Horowitz, G.; Strominger, A., Black strings and p-branes, Nucl. phys. B, 360, 197, (1991)
[19] Ceresole, A.; D’Auria, R.; Ferrara, S.; Van Proeyen, A., Duality transformations in supersymmetric Yang-Mills theory coupled to supergravity, Nucl. phys. B, 444, 92, (1995) · Zbl 0990.81736
[20] Seiberg, N.; Witten, E., Electromagnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. phys. B, 426, 19, (1994) · Zbl 0996.81510
[21] West, P.C., Introduction to supersymmetry and supergravity, (1986), World Scientific Singapore · Zbl 0631.53064
[22] Schoen, C., On fiber products of rational elliptic surfaces with section, Math. zeit., 197, 177, (1988) · Zbl 0631.14032
[23] Werner, J.; van Geemen, B., New examples of threefolds with c1=0, Math. zeit., 203, 211, (1990) · Zbl 0694.14020
[24] Greene, B.R.; Plesser, M.R., An introduction to mirror manifolds, (), 1-30 · Zbl 0904.32025
[25] Aspinwall, P.S.; Morrison, D.R., U-duality and integral structures, Phys. lett. B, 355, 141, (1995)
[26] Morrison, D.R., Through the looking Glass, (), to appear · Zbl 0935.32020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.