×

zbMATH — the first resource for mathematics

Black hole condensation and the web of Calabi-Yau manifolds. (English) Zbl 0908.32006
Summary: We review recent work concerning topology changing phase transitions through black hole condensation in Type II string theory. We then also briefly describe a present study aimed at extending the known web of interconnections between Calabi-Yau manifolds. We show, for instance, that all 7555 Calabi-Yau hypersurfaces in weighted projective four space are mathematically connected by extremal transitions.

MSC:
32G81 Applications of deformations of analytic structures to the sciences
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Witten, E.: Phases of N=2 theories in two dimensions. Nucl. phys. 403, 159 (1993) · Zbl 0910.14020
[2] Aspinwall, P.; Greene, B.; Morrison, D.: Calabi-Yau moduli space, mirror manifolds, and spacetime topology change in string theory. Nucl. phys. 416, 414 (1994) · Zbl 0899.32006
[3] Strominger, A.: Massless black holes and conifolds in string theory. Nucl. phys. 451, 96 (1995) · Zbl 0925.83071
[4] Greene, B. R.; Morrison, D. R.; Strominger, A.: Black hole condenstaion and the unification of sting vacua. Nucl. phys. 451, 109 (1995) · Zbl 0908.53041
[5] N. Seiberg and E. Witten, Electric-Magnetic Duality, Monopole Condensation, and Confinement in N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B426 19 · Zbl 0996.81510
[6] Bershadski, M.; Sadov, V.; Vafa, C.: D-strings on D-manifolds · Zbl 1004.81535
[7] Horowitz, G.; Strominger, A.: Black strings and p-branes. Nucl. phys. 368, 444-462 (1992)
[8] Ceresole, A.; D’auria, R.; Ferrara, S.; Van Proeyen, A.: Duality transformations in supersymmetric Yang-Mills theory coupled to supergravity. Nucl. phys. 444, 92 (1995) · Zbl 0990.81736
[9] Lefshetz, S.: L’analysis situs et la géométrie algébraique. 1924Gautier-villarsberlinselected papers, 283-439 (1924)
[10] Clemens, H.: Double solids. Advances in mathematics 47, 107-230 (1983) · Zbl 0509.14045
[11] Candelas, P.; Green, P. S.; Hübsch, T.: Rolling among Calabi-Yau vacua. Nucl. phys. 330, 49 (1990) · Zbl 0985.32502
[12] Gepner, D.: Exactly solvable string compactificatios on manifolds of \(SU(N)\) holonomy. Phys. lett. 199B, 380 (1987)
[13] Candelas, P.; Lynker, M.; Schimmrigk, R.: Calabi-Yau manifolds in weighted \(\mathbb{P}\)4. Nucl. phys. 341, 383 (1990) · Zbl 0962.14029
[14] Kreuzer, M.; Skarke, H.: No mirror symmetry in Landau-Ginsburg spectra. Nucl. phys. 388, 113 (1992)
[15] Batyrev, V.; Borisov, L. A.: On Calabi-Yau complete intersections in toric varieties · Zbl 0908.14015
[16] P. Candelas, private communication.
[17] Argyres, P.; Douglas, M.: New phenomena in \(SU(3)\) supersymmetric gauge theory. Nucl. phys. 448, 93 (1995) · Zbl 1009.81572
[18] Morrison, D. R.: Through the looking Glass. Lecture at CIRM conference (June, 1994) · Zbl 0935.32020
[19] Fulton, W.: Introduction to toric varieties. Annals of math. Studies 131 (1993) · Zbl 0813.14039
[20] Batyrev, V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. alg. Geom. 3, 493 (1994) · Zbl 0829.14023
[21] Hayakawa, Y.: Degeneration of Calabi-Yau manifold with Weil-Petersson metric
[22] Aspinwall, P. S.; Greene, B. R.; Morrison, D. R.: The monomial-divisor mirror map. Internat. math. Res. notices, 319 (1993) · Zbl 0798.14030
[23] A. M. Gabrielov, Intersection Matrixes for Certain Singularities, Functional Analysis and its Applications, vol. 7 No. 3 pp. 18–32
[24] Witten, E.: Some comments on string dynamics · Zbl 1003.81535
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.